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Examen Final
Durée 2h. Les documents, la calculatrice, les téléphones portables, tablettes, ordinateurs ne sont pas
autorisés. Les exercices sont indépendants. La qualité de la rédaction sera prise en compte.

Exercice 1. Régression Ridge
On considère le modèle de régression Y = Xβ + ϵ où Y est un vecteur aléatoire de Rn, X est une

matrice de taille n × p, β un vecteur de Rp et ϵ un vecteur de Rn de variables aléatoires supposées
indépendantes et identiquement distribuées, centrées et de variance σ2.

1. Régression des moindres carrés

(a) Rappelez la définition de l’estimateur des moindres carrés (MC) β̂ pour la régression mul-
tiple. Retrouvez son expression, en détaillant les étapes de calcul. Sous quelles hypothèses
cette expression est-elle valide ?
[On pourra utiliser la formule suivante : pour toute matrice A de taille n × p et vecteur b
de taille n, le gradient de f : x 7→ ∥Ax + b∥2 est donné par : ∇xf(x) = 2AT (Ax + b).]

Voir le cours.

β̂ = argmin
β′∈Rp


n∑

i=1

Yi −
p∑

j=1
β′

jxij

2
 = argmin

β′∈Rp

∥Y − Xβ′∥2

En dérivant la fonction f : β′ 7→
∥∥Y − Xβ′∥∥2, on obtient:

β̂ = (XT X)−1XT Y.

Cette expression est valide si XT X est inversible, i.e. si X est de plein rang (rg(X) = p).

(b) Retrouvez, en justifiant, l’espérance et la variance de cet estimateur (à σ2 fixé).

Voir le cours.
E[β̂] = (XT X)−1XTE[Y] = (XT X)−1XT Xβ = β

V[β̂] = (XT X)−1XTV[Y]X(XT X)−1 = (XT X)−1XT [σ2In]X(XT X)−1 = σ2(XT X)−1

(c) On suppose que XT X admet la décomposition spectrale : XT X = VT DV, où V est une
matrice orthogonale, et D une matrice diagonale de coefficients diagonaux (d1, · · · , dp).
Montrez que la variance de l’estimateur MC s’écrit V[β̂] = σ2VT D−1V.

Dans le cas où l’estimateur des moindres carrés est bien défini, XT X est symétrique inversible,
donc symétrique définie positive, et toutes ses valeurs propres sont strictement positive. On peut
donc écrire:

V[β̂] = σ2(XT X)−1 = σ2(VT DV)−1 = σ2VT D−1V

car V est orthogonale : V−1 = VT .

(d) On définit le risque quadratique de l’estimateur MC par la formule : E[∥β̂ − β∥2]. Inter-
prétez cette définition. Qualitativement, que peut on dire d’un estimateur dont le risque
quadratique est faible ?

Le risque quadratique est l’espérance de la distance euclidienne au carré entre l’estimateur et la
vrai valeur du paramètre. Si ce risque est faible, cela veut dire que l’estimateur est, en moyenne,
"proche" pour la distance euclidienne de la vrai valeur du paramètre.
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(e) Montrez l’égalité : E[∥β̂ − β∥2] = tr(V[β̂]), où on note tr la trace d’une matrice. En
utilisant les notations de la question (1-c), en déduire que E[∥β̂ − β∥2] = σ2∑d

k=1
1

dk
.

E
[∥∥∥β̂ − β

∥∥∥2
]

= E
[
tr
(
(β̂ − β)T (β̂ − β)

)]
= E

[
tr
(
(β̂ − β)(β̂ − β)T

)]
= tr(V[β̂]).

D’après (1-c), on obtient:

E
[∥∥∥β̂ − β

∥∥∥2
]

= tr(σ2VT D−1V) = σ2tr(D−1) = σ2
d∑

k=1

1
dk

.

(f) Rappelez l’énoncé du théorème de Gauss-Markov pour une régression multiple (sans le
démontrer). Que peut-on en déduire sur l’optimalité du risque quadratique de l’estimateur
des moindres carrés β̂ ?

Voir le cours. Comme l’estimateur des moindres carrés est le BLUE, c’est aussi l’estimateur dont
le risque quadratique est le plus faible. En effet, si β̃ est un estimateur linéaire sans biais, alors
V[β̂] − V[β̃] est une matrice positive, donc

E
[∥∥∥β̂ − β

∥∥∥2
]

− E
[∥∥∥β̃ − β

∥∥∥2
]

= tr(V[β̂]) − tr(V[β̃]) = tr
(
V[β̂] − V[β̃]

)
≥ 0

car la trace d’une matrice symétrique positive est positive.

(g) On suppose que p > n. Que dire de l’estimateur des moindres carrés dans ce cas ?

Si p > n, alors la matrice X ne peut pas être de plein rang (rg(X) < p), et XT X n’est pas
inversible. L’estimateur des moindres carrés n’est donc pas bien défini.

(h) On se place dans le cas où n > p, p = 2 et X = (x z), avec deux prédicteurs x et z
centrés, réduits, et corrélés: ∑n

i=1 xi = ∑n
i=1 zi = 0, ∑n

i=1 x2
i = ∑n

i=1 z2
i = 1 et ρ(x, z) =∑n

i=1 xizi =
√

1 − δ, avec δ un réel positif (0 < δ < 1). Explicitez XT X dans ce cas,
et vérifiez que 1 + ρ(x, z) et 1 − ρ(x, z) sont les valeurs propres de XT X. En déduire
que E[∥β̂ − β∥2] = 2σ2/δ. Comment se comporte le risque quadratique lorsque les deux
variables sont très corrélées ?

On a
XT X =

( ∑n
i=1 x2

i

∑n
i=1 xizi∑n

i=1 xizi
∑n

i=1 y2
i

)
=
(

1 ρ(x, z)
ρ(x, z) 1

)
.

On vérifie facilement que (1 + ρ(x, z)) et (1 − ρ(x, z)) sont les valeurs propres associées aux
vecteurs propres (1, 1) et (1, −1). D’après la question (1-e),

E
[∥∥∥β̂ − β

∥∥∥2
]

= σ2tr((XT X)−1) = σ2( 1
1 + ρ(x, z) + 1

1 − ρ(x, z)) = σ2 2
1 − ρ(x, z)2 = 2σ2

δ
.

Lorsque les deux variables sont très corrélées, δ tend vers 0 et le risque quadratique n’est pas
contrôlé. Dans le cas limite où δ = 0, les deux prédicteurs sont identiques, et la matrice XT X
n’est plus de plein rang : on sort du cadre de la régression des moindres carrés classique.

2. Régression ridge
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(a) On appelle estimateur ridge de paramètre λ (λ > 0) l’estimateur de β suivant:

β̂λ = argmin
β′∈Rp

{
∥Y − Xβ′∥2 + λ ∥β′∥2}

.

Dans toute la suite, on considère que λ > 0 est donné et fixé. Montrez l’égalité: β̂λ =
(XT X + λIp)−1XT Y, avec Ip la matrice identité de taille p.

En utilisant la formule, on obtient:

∇β′

[∥∥Y − Xβ′∥∥2 + λ
∥∥β′∥∥2

]
= −2XT (−Xβ′ + Y) + 2λβ′

On obtient l’estimateur en annulant ce gradient:

2XT Xβ̂λ − 2XT Y + 2λβ̂λ = 0 ⇐⇒ β̂λ = (XT X + λIp)−1XT Y

avec (XT X + λIp) toujours inversible lorsque λ > 0. C’est bien un estimateur linéaire en Y.

(b) Calculez l’espérance et la variance de l’estimateur ridge (à σ2 fixé).

E[β̂λ] = (XT X + λIp)−1XTE[Y] = (XT X + λIp)−1XT Xβ ̸= β.

V[β̂λ] = (XT X + λIp)−1XTV[Y]X(XT X + λIp)−1 = σ2(XT X + λIp)−1XT X(XT X + λIp)−1

(c) On suppose que p > n. Que dire de l’estimateur ridge dans ce cas ?

(XT X + λIp) est toujours inversible lorsque λ > 0, même lorsque XT X n’est pas de plein rang,
et en particulier si p > n.

(d) On suppose la même décomposition spectrale XT X = VT DV que précédemment. Mon-
trez que la variance de l’estimateur ridge s’écrit: V[β̂λ] = σ2VT FV, avec F une matrice
diagonale telle que, pour tout 1 ≤ k ≤ p : Fkk = dk/[(dk + λ)2].

On a (XT X + λIp)−1 = (VT (D + λIp)V)−1 = VT (D + λIp)−1V par orthogonalité de V. Donc:

V[β̂λ] = σ2(XT X + λIp)−1XT X(XT X + λIp)−1

= σ2(VT (D + λIp)−1V)(VT DV)(VT (D + λIp)−1V)
= σ2VT (D + λIp)−1D(D + λIp)−1V
= σ2VT FV,

où F = (D + λIp)−1D(D + λIp)−1 est une matrice diagonale comme produit de matrices di-
agonales, dont les coefficients sont précisément donnés par la formule donnée dans l’énoncé.

(e) Déduire des questions précédentes que, lorsque les deux estimateurs sont bien définis,
V[β̂] − V[β̂λ] est une matrice définie positive.

Dans le cas où l’estimateur des moindres carrés est bien défini, XT X est symétrique inversible,
donc symétrique définie positive, et toutes ses valeurs propres sont strictement positive. V[β̂] −
V[β̂λ] est alors une matrice symétrique, dont les valeurs propres dans la base V sont donnés par

gk = 1
dk

− dk

(dk + λ)2 = λ2 + 2λdk

dk(dk + λ)2

Comme λ > 0 par hypothèse, on obtient que gk > 0 pour tout les 1 ≤ k ≤ p. Les valeurs propres
de V[β̂] −V[β̂λ] sont donc strictement positives, et il s’agit bien d’une matrice définie positive.
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(f) Est-ce que ce résultat est en contradiction avec le théorème de Gauss-Markov ?

Le théorème de Gauss-Markov nous assure que l’estimateur des moindres carré est l’estimateur
ayant la plus petite variance parmi les estimateurs linéaires non biaisés. Or, l’estimateur ridge
est bien linéaire, mais il est biaisé. Le fait que sa variance soit plus faible n’entre donc pas en
contradiction avec le théorème de Gauss Markov.

(g) On se place dans le cadre de la question (1-h), où p = 2 et X = (x z), avec deux prédicteurs
x et z centrés, réduits, et corrélés: ∑n

i=1 xi = ∑n
i=1 zi = 0, ∑n

i=1 x2
i = ∑n

i=1 z2
i = 1 et

ρ(x, z) = ∑n
i=1 xizi =

√
1 − δ, avec δ un réel positif (δ < 1). Montrez que dans ce cas:

tr(V[β̂λ]) ≤ 2σ2

(1+λ)2 + σ2

λ2 . En quoi est-ce que ce comportement est différent de celui de
l’estimateur des moindres carrés ?

D’après les questions précédentes:

tr
(
V
[
β̂λ

])
= σ2

(
d1

(d1 + λ)2 + d2
(d2 + λ)2

)
= σ2 1 +

√
1 − δ

(1 +
√

1 − δ + λ)2 + σ2 1 −
√

1 − δ

(1 −
√

1 − δ + λ)2

≤ 2σ2

(1 + λ)2 + σ2

λ2 .

A λ fixé, la trace de la variance est donc bornée, même lorsque δ tend vers zéro, c’est à dire
même lorsque la corrélation entre les deux variables explicatives s’approche de 1.

(h) Montrez l’égalité : E[(β̂λ − β)(β̂λ − β)T ] = V[β̂λ] + (E[β̂λ] − β)(E[β̂λ] − β)T .

[On pourra remarquer que : (β̂λ − β) = (β̂λ − E[β̂λ]) + (E[β̂λ] − β), et développer.]

E
[
(β̂λ − β)(β̂λ − β)T

]
= E

[
(β̂λ − E[β̂λ] + E[β̂λ] − β)(β̂λ − E[β̂λ] + E[β̂λ] − β)T

]
= E

[
(β̂λ − E[β̂λ])(β̂λ − E[β̂λ])T + (E[β̂λ] − β)(E[β̂λ] − β)T

+ (E[β̂λ] − β)(β̂λ − E[β̂λ])T + (β̂λ − E[β̂λ])(E[β̂λ] − β)T
]

= V
[
β̂λ

]
+ (E[β̂λ] − β)(E[β̂λ] − β)T .

car, par linéarité de l’espérance:

E[(E[β̂λ] − β)(β̂λ −E[β̂λ])T ] = (E[β̂λ] − β)E[(β̂λ −E[β̂λ])T ] = (E[β̂λ] − β)(E[β̂λ] −E[β̂λ])T = 0.

(i) En déduire que le risque quadratique de l’estimateur ridge s’écrit :

E
[∥∥∥β̂λ − β

∥∥∥2
]

= tr(V
[
β̂λ

]
) +

∥∥∥E[β̂λ] − β
∥∥∥2

.

On utilise les mêmes formules que précédement:

E
[∥∥∥β̂λ − β

∥∥∥2
]

= tr
(
E
[
(β̂λ − β)T (β̂λ − β)

])
= tr

(
V
[
β̂λ

]
+ (E[β̂λ] − β)(E[β̂λ] − β)T

)
= tr

(
V
[
β̂λ

])
+
∥∥∥E[β̂λ] − β

∥∥∥2
.
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(j) Que peut on en déduire (de manière qualitative) sur les risques quadratiques de estimateurs
des moindre carrés et ridge ? Est-ce que l’un des deux estimateurs est préférable en terme
de risque ? On pourra regarder la différence des risques quadratiques, et discuter d’un
compromis biais-variance.

La différence des risques est donné par :

E
[∥∥∥β̂ − β

∥∥∥2
]

− E
[∥∥∥β̂λ − β

∥∥∥2
]

= tr
(
V
[
β̂
])

− tr
(
V
[
β̂λ

])
−
∥∥∥E[β̂λ] − β

∥∥∥2

= tr
(
V
[
β̂
]

− V
[
β̂λ

])
−
∥∥∥E[β̂λ] − β

∥∥∥2
.

On sait que le premier terme est positif par les questions précédentes. Si le biais de l’estimateur
ridge est petit, alors le risque de l’estimateur ridge est plus petit que celui de l’estimateur des
moindres carrés. En revanche, si le biais de l’estimateur ridge est grand, alors le risque de
l’estimateur ridge peut devenir plus grand que celui de l’estimateur des moindres carrés. La
qualité en terme de risque de l’estimateur ridge dépend donc de son biais, et il y a un compromis
biais-variance à trouver, qui dépend du choix de λ.

(k) D’après ce qui précède, dans quel(s) cas particulier(s) conseilleriez vous l’utilisation de
l’estimateur ridge ?

En grande dimension, lorsque l’on a beaucoup de prédicteurs, avec potentiellement p > n, et
potentiellement des prédicteurs corrélés, alors l’estimateur ridge peut donner des estimations
bien définies, et avec une variance bornée, contrairement à l’estimateur des moindres carrés
classique.

Exercice 2. Musique sur Spotify
On s’intéresse à la popularité des musiques sur Spotify. On dispose d’un jeu de données de 1466

pistes de musiques, toutes publiées avant l’an 2000, comportant les variables suivantes :

− popularity : popularité du morceau, entre 0 (non populaire) et 100 (très populaire).
− danceability, speechiness, acousticness, instrumentalness, liveness: scores, compris

entre 0 et 1, décrivant diverses caractéristiques du morceau.
− tempo : tempo en "beat par minutes".
− duration : durée du morceau en ms.
− loudness : volume sonore moyen du morceau en décibels.
− genre : style musical. On ne garde que les musiques "pop", "rap" et "r&b".
− year : année de publication.
− artist : interprète.

Table 1: Extrait de quelques lignes et colones du jeu de données.
popularity danceability tempo duration loudness genre year artist

Wannabe 79 0.768 110.008 173027 -6.145 pop 1996 Spice Girls
One Way Or Another 55 0.442 162.272 217364 -5.086 pop 1978 Blondie
Straight Outta Compton 70 0.834 102.848 258688 -9.484 rap 1988 N.W.A.
Still D.R.E. 75 0.816 93.431 270587 -3.323 rap 1999 Dr. Dre
All I Want for Christmas Is You 90 0.335 150.277 241107 -7.462 r&b 1994 Mariah Carey
Ain’t No Sunshine 76 0.479 79.593 125093 -11.451 r&b 1971 Bill Withers

1. On cherche à prédire la popularité d’un morceau en fonction de ses caractéristiques. On exécute
les commandes suivantes dans R :
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fit1 <- lm(popularity ~
danceability + speechiness + acousticness + tempo +
loudness + instrumentalness + liveness + duration + year,

data = spotify_songs)
summary(fit1)

##
## Call:
## lm(formula = popularity ~ danceability + speechiness + acousticness +
## tempo + loudness + instrumentalness + liveness + duration +
## year, data = spotify_songs)
##
## Residuals:
## Min 1Q Median 3Q Max
## -52.135 -11.783 1.112 12.322 45.047
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.517e+02 1.379e+02 5.452 5.85e-08 ***
## danceability 1.256e+00 3.785e+00 0.332 0.739948
## speechiness 2.626e-01 4.135e+00 0.064 0.949370
## acousticness 1.684e+00 2.347e+00 0.717 0.473252
## tempo -6.799e-03 1.567e-02 -0.434 0.664376
## loudness 7.495e-01 1.435e-01 5.223 2.02e-07 ***
## instrumentalness -2.037e+00 3.195e+00 -0.638 0.523824
## liveness 1.790e+00 2.820e+00 0.635 0.525728
## duration -2.713e-05 8.066e-06 -3.364 0.000789 ***
## year -3.482e-01 6.939e-02 -5.019 5.85e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 16.52 on 1456 degrees of freedom
## Multiple R-squared: 0.04359, Adjusted R-squared: 0.03768
## F-statistic: 7.374 on 9 and 1456 DF, p-value: 1.411e-10

(a) À quoi correspondent les colonnes Std. Error et t value ? Ecrivez de manière formelle
les tests correspondants, avec les hypothèses, l’expression de la statistique, et sa loi sous
H0. Interprétez les différents coefficients.

Voir le cours. On se place dans le cadre des hypothèses gaussiennes classiques. Pour chaque
coefficient k, le test de Student correspond à H0: le coefficient est nul vs H1: il est non nul. La
statistique est donnée par

Tk = β̂k√
σ̂2(XT X)−1

,

sous H0, elle suit une loi de Student à n − p = 1466 − 10 = 1456 degrés de libertés. Std. Error
correspond à

√
σ̂2(XT X)−1, et t value à T obs

k .
Trois coefficients sont significativement différents de zero: l’intercept, et ceux associés au volume
sonore (loudness), à la durée en ms (duration) et à l’année de publications (year).

(b) À quoi correspond le Multiple R-squared ? Donnez son expression. Interprétez.

Voir le cours.

R2 = 1 − RSS

TSS
= 1 −

∥∥∥Y − Ŷ
∥∥∥2

∥∥∥Y − 1Ȳ
∥∥∥2 .

Le R2 est proche de 0 : les moindres carrés expliqués sont petits par rapport aux moindres carrés
totaux. La regression n’est pas très bonne.
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(c) À quoi correspond la F-statistic ? Ecrivez de manière formelle le test correspondant,
avec les hypothèses, l’expression de la statistique, et sa loi sous H0. Interprétez.
Voir le cours. Il s’agit d’un test de Fisher emboîté. On teste H0 : tous les coefficients sont
nuls sauf l’intercept versus H1 : au moins un des coefficients hors intercept est non nul. La
statistisque de test est :

F = ∥Ŷ − Ȳ 1∥2/(p − 1)
∥Y − Ŷ ∥2/(n − p)

où p = 10 le nombre de coefficients, et n = 1466 le nombre d’observations. En supposant le
modèle classique gaussien, la statistique de test suit, sous H0, une loi de Fisher à p − 1 = 9,
n − p = 1456 degrés de libertés. On rejette ici l’hypothèse nulle: au moins l’un des coefficients
hors intercept est non nul.

2. On complète l’analyse avec les commandes suivantes :

fit2 <- lm(popularity ~ loudness + duration + year, data = spotify_songs)
AIC(fit1, fit2)

## df AIC
## fit1 11 12395.34
## fit2 5 12385.17

(a) Donnez la définition de l’AIC. Quelle est son utilité ?
Voir le cours. Pour un modèle m donné avec k degrés de libertés, on a

AIC(mk) = −2LL(θ̂m) + 2k

où LL(θ̂m) est la log vraisemblance maximisée du modèle. L’AIC est un score de vraisemblance
pénalisé : lorsque les modèles sont plus gros, leur vraisemblance est meilleure, mais la pénalité
associée est auss plus élevée. On cherche à choisir un modèle qui a le plus petit AIC possible.

(b) Quel modèle de régression préférez-vous ?

On préfère le second modèle, qui a un plus petit AIC. C’est cohérent avec l’analyse précédente :
on n’a gardé que ls coefficients significatifs.

3. On cherche à savoir si le style musical a une influence sur la popularité, avec l’analyse :

summary(lm(popularity ~ genre, data = spotify_songs))

##
## Call:
## lm(formula = popularity ~ genre, data = spotify_songs)
##
## Residuals:
## Min 1Q Median 3Q Max
## -39.464 -12.626 1.374 13.374 46.849
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 50.464 1.124 44.904 < 2e-16 ***
## genrer&b -7.313 1.288 -5.679 1.63e-08 ***
## genrerap -5.837 1.332 -4.382 1.26e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 16.67 on 1463 degrees of freedom
## Multiple R-squared: 0.02163, Adjusted R-squared: 0.02029
## F-statistic: 16.17 on 2 and 1463 DF, p-value: 1.133e-07
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(a) Explicitez le modèle linéaire utilisé par R. À quoi correspondent les coefficients genrer&b
et genrerap ?

Voir le cour. Soit Pik la variable aléatoire représentant la popularité de ma musique i (1 ≤ i ≤
1466) de genre musical k (1 ≤ k ≤ 3) avec k = 1 pour la pop, k = 2 pour le r&b et k = 3 pour
le rap. Le modèle s’écrit:

Pik = µ + βk + ϵi

avec les ϵi iid gaussiens de variance inconnue σ2. Pour l’identifiabilité, R impose la contrainte
que β1 = 0, si bien que βk représente la différence de moyenne entre le groupe 1 de référence
(pop) et le groupe k > 1.
genrer&b et genrerap correspondent aux β2 et β3 dans le modèle ci dessous : il s’agit de la
différence de moyenne de popularité entre les musique pop et les musiques r&b et rap respec-
tivement.

(b) D’après cette analyse, quelles sont les popularités moyennes respectives des musiques de
pop, r&b et de rap ? Peut-on dire qu’elles sont significativement différentes ?

Les moyennes de popularité pour la pop, le r&b et le rap sont, respectivement, de 50.464,
50.464 − 7.313 = 43.151 et 50.464 − 5.837 = 44.627. Les coefficients genrer&b et genrerap sont
significativement non nuls d’après le test de Student, la pop et le rap d’une part, et la pop et le
r&b d’autre part ont bien des popularités significativement différents. En revanche, cette analyse
ne nous permet pas de conclure quand à la significativité de la différence entre le r&b et le rap.

(c) D’après cette analyse, peut-on rejeter l’hypothèse suivant laquelle tous les genres de
musique ont la même popularité ?

On regarde le test de Fisher du modèle, qui correspond au test de l’hypothèse H0 : β2 = β3 = 0
vs au moins un des coefficients hors intercept est non nul. Sous H0, tous les genres ont la
même popularité moyenne. On constate que la p-valeur associée au F-test est très faible de
1.133e-07. On rejette donc l’hypothèse nulle.

4. On effectue l’anova suivante:

anova(lm(popularity ~ loudness + year + duration * genre, data = spotify_songs))

## Analysis of Variance Table
##
## Response: popularity
## Df Sum Sq Mean Sq F value Pr(>F)
## loudness 1 5052 5051.6 18.8211 1.534e-05 ***
## year 1 9275 9274.8 34.5556 5.127e-09 ***
## duration 1 3286 3286.5 12.2446 0.0004807 ***
## genre 2 5852 2926.2 10.9021 1.997e-05 ***
## duration:genre 2 683 341.6 1.2729 0.2803353
## Residuals 1458 391331 268.4
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(a) Explicitez le modèle utilisé par R dans cette analyse.

Soit Pik la variable aléatoire représentant la popularité de ma musique i (1 ≤ i ≤ 1466) de genre
musical k (1 ≤ k ≤ 3) avec k = 1 pour la pop, k = 2 pour le r&b et k = 3 pour le rap. On note
le volume sonore du morceau i vi, sa durée di, et son année ai. On écrit :

Pi,k = µ + αk + (βd + γk) × di + βlli + βaai + +ϵi

Pour l’identifiabilité, R impose la contrainte que α1 = 0 et γ1 = 0 (pop est la référence).
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(b) En utilisant la commande précédente, pouvez-vous répondre aux questions suivantes ? Si
vous n’avez pas assez d’élément pour répondre à une question, indiquez pourquoi. Sinon,
indiquez précisément quelle partie de la sortie vous permet de conclure.

i. L’ajout du régresseur loudness à un modèle contenant uniquement l’intercept améliore-
t-il significativement le modèle ?
Oui, il s’agit du premier test de Fisher, avec une p-valeur de 1.534e-05.

ii. L’ajout du régresseur year à un modèle contenant uniquement l’intercept améliore-t-il
significativement le modèle ?
On ne peut pas savoir : ici le test correspond à l’ajout de year a un modèle contenant déjà
l’intercept et loudness.

iii. L’ajout du régresseur duration à un modèle contenant uniquement l’intercept améliore-
t-il significativement le modèle ?
On ne peut pas savoir : ici le test correspond à l’ajout de duration a un modèle contenant
déjà l’intercept, loudness et year.

iv. L’ajout du facteur genre à un modèle contenant déjà l’intercept et les trois regresseurs
continus loudness, year et duration améliore-t-il significativement le modèle ?
Oui, il s’agit de l’avant-dernier dernier test de Fisher de la table, avec une p-valeur de
1.997e-05.

v. L’ajout d’une pente spécifique à chaque genre dans la regression contre la duration
améliore-t-il significativement le modèle ?
Non, il s’agit du dernier test de Fisher. La p-valeur des interactions est de 0.2803353 >

0.05, on ne peut pas rejeter l’hypothèse nulle suivant laquelle tous les genres ont la même
dépendance à la durée du morceau.

5. J’aimerais composer un morceau qui aie beaucoup de succès. Au vue des analyses précédentes,
quels conseils pourriez vous me donner ?

Il faut produire un morceau de pop fort, court, et il y a longtemps. Mais ces variables n’expliquent
qu’une très faible part du succès. (Il faut donc avoir du talent.)
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