TD 2 : Régression linéaire multiple

Exercice 1. Rappels de cours.

- 1. Rappeler le principe d'une régression linéaire multiple. Préciser les hypothèses.
- 2. Faire un schéma pour donner une interprétation géométrique à la régression linéaire multiple. Retrouvez l'expression de l'estimateur des moindres carrés $\hat{\beta}$.
- 3. Donner l'expression de la matrice de projection $\mathbf{P}^{\mathbf{X}}$ et de l'estimateur $\hat{\beta}$. Vérifier que $\mathbf{P}^{\mathbf{X}}$ est bien une matrice de projection.
- 4. Quelles sont les hypothèses supplémentaires dans le cas gaussien?
- 5. Dans le cas Gaussien, retrouvez l'expression des estimateurs du maximum de vraisemblance pour β et σ^2 en anulant le gradient de la fonction à maximiser.
- 6. Dans le cas Gaussien, retrouvez la loi de $\hat{\beta}$ et $\hat{\sigma}^2$, à variance connue ou inconnue.

On conseille de toujours faire attention à la dimension des objets (matrices et vecteurs) qu'on manipule.

Exercice 2. Régression simple vs régression multiple.

- 1. Rappeler les expressions de $\hat{\beta}_0$ et $\hat{\beta}_1$ dans le cas d'une régression simple.
- 2. Rappeler l'expression de $\hat{\beta}$ dans le cas d'une régression multiple.
- 3. Retrouver le résultat de la question 1 à partir de celui de la question 2.
- 4. Rappeler les expressions des variances et covariance de $\hat{\beta}_0$ et $\hat{\beta}_1$ pour une régression simple.
- 5. Rappeler l'expression de la matrice de variance-covariance de $\hat{\beta}$ pour une régression multiple.
- 6. Retrouver le résultat de la question 4 à partir de celui de la question 5.

Exercice 3. Régression à deux variables. On étudie l'évolution d'une variable y en fonction de deux variables x et z. On dispose de n observations de ces variables. On note $X = \begin{pmatrix} \mathbb{1} & x & z \end{pmatrix}$, où $\mathbb{1}$ est le vecteur constant, et x et z sont les vecteurs des variables explicatives. Nous avons obtenu les résultats suivants:

$$X^T X = \begin{pmatrix} 30 & 0 & 0 \\ ? & 10 & 7 \\ ? & ? & 15 \end{pmatrix} , \quad \|\hat{\varepsilon}\|^2 = 12 , \quad \hat{\beta} = \begin{pmatrix} -2 \\ 1 \\ 2 \end{pmatrix} .$$

- 1. (a) Donner les valeurs manquantes. Que vaut n?
 - (b) Calculer le coefficient de corrélation empirique entre x et z.
- 2. (a) Calculer $\sum_{i=1}^{n} \hat{\varepsilon}_{i}$, puis en déduire la valeur de la moyenne arithmétique \bar{y} .
 - (b) Calculer la somme des carrés résiduels (SCR), la somme des carrés expliquée (SCE), la somme des carrés totale (SCT) et le coefficient de détermination \mathbb{R}^2 .
- 3. (a) Calculer $X^T y$ en utilisant la valeur de $\hat{\beta}$, puis en déduire $\sum x_i y_i$ et $\sum z_i y_i$.
 - (b) Calculer les coefficients de corrélation $\rho_{x,y}$ et $\rho_{z,y}$. En déduire la valeur du R^2 pour le modèle de régression de y par 1 et x, puis de y par 1 et z.
- 4. (a) Sous l'hypothèse gaussienne, donnez la loi de $\hat{\beta}_2$ le coefficient associé à x en fonction de β_2 et σ^2 .
 - (b) Calculer $(X^TX)^{-1}$.
 - (c) Calculez un estimateur sans biais de la variance σ^2 .
 - (d) Proposez un intervalle de confiance à 95% pour β_2 . Que peut-on conclure quant à la nullité de ce coefficient ? On donne le quantile à 97.5% de la loi de Student à 27 degrés de libertés : $t_{27}(0.975) = 2.05$.

Exercice 4. Interprétation géométrique.

1. Nous avons une variable y à expliquer par une variable x. Nous avons effectué n=2 mesures et trouvé

$$(x_1, y_1) = (4, 5)$$
 et $(x_2, y_2) = (1, 5)$

Représenter les variables, estimer β dans le modèle $y_i = \beta x_i + \varepsilon_i$ et représenter \hat{y} .

2. Nous avons maintenant une variable y à expliquer par deux variables x_1 et x_2 . Nous avons effectué n=3 mesures et trouvé

$$(x_{1,1}, x_{1,2}, y_1) = (3, 2, 0), \quad (x_{2,1}, x_{2,2}, y_2) = (3, 3, 5), \quad (x_{3,1}, x_{3,2}, y_3) = (0, 0, 3).$$

Représenter les variables, estimer β dans le modèle $y_i = \beta_1 x_{i,1} + \beta_2 x_{i,2} + \varepsilon_i$ et représenter \hat{y} .

Exercice 5. Croissance de R^2 . Soit X une matrice de taille $n \times p$ composée de p vecteurs indépendants de \mathbb{R}^n . Nous notons X_q la matrice composée des q < p premiers vecteurs de X. On suppose que la première colone de X est égale à $\mathbb{1}$, i.e. que l'intercept est inclu dans les deux modèles. Nous avons les deux modèles suivants :

(1)
$$Y = X\beta + \varepsilon$$
 et (2) $Y = X_q\beta_q + \varepsilon_q$.

Comparer les R^2 dans les deux modèles.

Exercice 6. Régression sur données agrégées par groupes On suppose le modèle de régression

$$Y = X\beta + \varepsilon$$
, avec $\mathbb{E}[\varepsilon] = 0$ et $\operatorname{Var}(\varepsilon) = \sigma^2 I_n$.

Les données individuelles $(x_{i1}, \ldots, x_{ip}, y_i)$ ne sont cependant pas disponibles. On observe seulement les moyennes sur I groupes, notés C_1, \ldots, C_I , d'effectifs n_1, \ldots, n_I :

$$\bar{y}_k = \frac{1}{n_k} \sum_{i \in C_k} y_i$$
 et $\bar{x}_{kj} = \frac{1}{n_k} \sum_{i \in C_k} x_{ij}$.

En notant $\bar{\varepsilon}_k = \frac{1}{n_k} \sum_{i \in C_k} \varepsilon_i$, on a alors $\bar{Y} = \bar{X}\beta + \bar{\varepsilon}$.

- 1. Calculer $\mathbb{E}[\bar{\varepsilon}]$ et $Var[\bar{\varepsilon}]$.
- 2. On pose

$$M = \operatorname{diag}(\sqrt{n_1}, \dots, \sqrt{n_I}), \quad Y^* = M\bar{Y}, \quad X^* = M\bar{X}, \quad \varepsilon^* = M\bar{\varepsilon}.$$

Quelle est la relation entre Y^* , X^* et ε^* ? Calculer $\mathbb{E}[\varepsilon^*]$ et $\text{Var}(\varepsilon^*)$.

- 3. En déduire un estimateur de β .
- 4. Application numérique : I = 3 avec $n_1 = 1$ et $n_2 = n_3 = 2$. $\bar{X}_1^T = (1, 1, 1), \bar{X}_2^T = (7, 12, 5)$ et $\bar{Y}^T = (15, 25, 10)$.

Exercice 7. Estimateurs linéaires Soit θ_1 et θ_2 deux paramètres réels inconnus et soit :

- Y_1 un estimateur sans biais de $\theta_1 + \theta_2$ et de variance σ^2
- $-~Y_2$ un estimateur sans biais de $2\theta_1-\theta_2$ et de variance $4\sigma^2$
- $-Y_3$ un estimateur sans biais de $6\theta_1 + 3\theta_2$ et de variance $9\sigma^2$

Les estimateurs Y_1 , Y_2 et Y_3 étant indépendants, nous cherchons les estimateurs sans biais de θ_1 et θ_2 , linéaires en Y_1 , Y_2 et Y_3 , et de variance minimale.

- 1. Notons $\theta = \alpha Y_1 + \beta Y_2 + \gamma Y_3$.
 - (a) Quelles sont les équations à satisfaire pour que $\tilde{\theta}$ soit un estimateur sans biais de θ_1 ?

- (b) Dans ce cas-là, exprimer la variance de $\tilde{\theta}$ et la minimiser.
- (c) Idem pour θ_2 .
- 2. On pose $Z_1 = Y_1$, $Z_2 = Y_2/2$, et $Z_3 = Y_3/3$, et on note $Z = (Z_1, Z_2, Z_3)^T$ et $\theta = (\theta_1, \theta_2)^T$.
 - (a) Trouver la matrice X telle que $\mathbb{E}[Z] = X\theta$.
 - (b) Que vaut la matrice de variance-covariance de Z?
 - (c) On peut alors écrire $Z = X\theta + \varepsilon$. Retrouver les estimateurs de θ_1 et θ_2 calculés question 1.

Exercice 8. Théorème de Gauss Markov L'objectif de cet exercice est de démontrer le théorème de Gauss-Markov. On se place dans le cadre du modèle de régression multivarié classique (sans hypothèse gaussienne). Soit $\hat{\boldsymbol{\beta}}$ l'estimateur des moindres carrés du vecteur de coefficient $\boldsymbol{\beta}$.

- 1. Rappellez les hypothèses du modèle de régression multiple, ainsi que la définition de l'estimateur des moindres carrés, et donnez son expression.
- 2. Montrez que l'estimateur des moindres carrés $\hat{\beta}$ est linéaire et sans biais. Retrouvez l'expression de sa matrice de variance-covariance.
- 3. Soit $\tilde{\boldsymbol{\beta}}$ un autre estimateur linéaire sans biais de $\boldsymbol{\beta}$.
 - (a) Montrez qu'il existe une matrice ${\bf B}$ déterministe telle que $\tilde{\beta}={\bf By}$. Précisez les dimensions de ${\bf B}$.
 - (b) Montrez que, pour tout vecteur $\boldsymbol{\beta}$ de coefficient, $\mathbf{B}\mathbf{X}\boldsymbol{\beta} = \boldsymbol{\beta}$. En déduire que $\mathbf{B}\mathbf{X} = \mathbf{I}_p$ où \mathbf{I}_p est la matrice identité de taille p.
- 4. Soient \mathbf{S}_1 et \mathbf{S}_2 deux matrices symétriques réelles de taille $p \times p$. On dit que $\mathbf{S}_1 \leq \mathbf{S}_2$ si la matrice $\mathbf{S}_2 \mathbf{S}_1$ est une matrice symétrique positive, i.e. si elle est symétrique, et, pour tout $\mathbf{u} \in \mathbb{R}^p$, $\mathbf{u}^T(\mathbf{S}_2 \mathbf{S}_1)\mathbf{u} \geq 0$. On cherche à montrer que $\mathbb{V}[\hat{\boldsymbol{\beta}}] \leq \mathbb{V}[\tilde{\boldsymbol{\beta}}]$.
 - (a) Montrez: $\mathbb{V}[\tilde{\boldsymbol{\beta}}] \mathbb{V}[\hat{\boldsymbol{\beta}}] = \mathbb{V}[\tilde{\boldsymbol{\beta}} \hat{\boldsymbol{\beta}}] + \mathbb{C}[\tilde{\boldsymbol{\beta}} \hat{\boldsymbol{\beta}}; \hat{\boldsymbol{\beta}}] + \mathbb{C}[\tilde{\boldsymbol{\beta}} \hat{\boldsymbol{\beta}}; \hat{\boldsymbol{\beta}}]^T$.
 - (b) Montrez: $\mathbb{C}[\tilde{\boldsymbol{\beta}}; \hat{\boldsymbol{\beta}}] = \sigma^2(\mathbf{X}^T\mathbf{X})^{-1}$.
 - (c) Montrez: $\mathbb{C}[\tilde{\boldsymbol{\beta}} \hat{\boldsymbol{\beta}}; \hat{\boldsymbol{\beta}}] = 0.$
 - (d) En déduire que $\mathbb{V}[\tilde{\boldsymbol{\beta}}] \mathbb{V}[\hat{\boldsymbol{\beta}}]$ est une matrice symétrique positive.
- 5. Conclure la démontration du théorème de Gauss-Markov.

Exercice 9. Théorème de Cochran L'objectif de cet exercice est de démontrer la version du théorème de Cochran utilisée dans le cours. Soient :

- Y un vecteur gaussien $\mathbf{Y} \sim \mathcal{N}(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n);$
- $-\mathcal{M}$ un sous-espace vectoriel de \mathbb{R}^n de dimension p;
- **P** la matrice de projection orthogonale sur \mathcal{M} ;
- $-\mathbf{P}^{\perp} = \mathbf{I}_n \mathbf{P}$ la matrice de la projection sur l'espace orthogonal \mathcal{M}^{\perp} .

On cherche alors à montrer les énoncés suivants :

- (i) $\mathbf{PY} \sim \mathcal{N}(\mathbf{P}\boldsymbol{\mu}, \sigma^2 \mathbf{P})$ et $\mathbf{P}^{\perp}\mathbf{Y} \sim \mathcal{N}(\mathbf{P}^{\perp}\boldsymbol{\mu}, \sigma^2 \mathbf{P}^{\perp})$;
- (ii) $\mathbf{P}\mathbf{Y}$ et $\mathbf{P}^{\perp}\mathbf{Y}$ sont independents;
- (iii) $\frac{1}{\sigma^2} \|\mathbf{P}(\mathbf{Y} \boldsymbol{\mu})\|^2 \sim \chi_p^2 \text{ et } \frac{1}{\sigma^2} \|\mathbf{P}^{\perp}(\mathbf{Y} \boldsymbol{\mu})\|^2 \sim \chi_{n-p}^2$.

Ce sont ces proprités qui permettent de conclure sur la loi des estimateurs dans le cas de la régression linéaire gaussienne.

- 1. Montrez que, si l'on adment le théorème, on peut retrouver la loi des estimateurs $\hat{\beta}$ et $\hat{\sigma}^2$ dans le cas classique du modèle gaussien multivarié.
- 2. En utilisant les propriétés usuelles des vecteurs gaussiens, montrez l'énoncé (i).
- 3. Soit **U** une matrice orthogonale de taille n (telle que $\mathbf{U}\mathbf{U}^T = \mathbf{I}_n$), et $\boldsymbol{\Delta}$ une matrice diagonale vérifiant $\Delta_{ii} = 1$ si $1 \leq i \leq p$ et $\Delta_{ii} = 0$ si $i \geq p$, telles que $\mathbf{P} = \mathbf{U}\boldsymbol{\Delta}\mathbf{U}^T$. Soit $\mathbf{Z} = \mathbf{U}^T\mathbf{Y}$.
 - (a) Justifiez l'existence de la décomposition $\mathbf{P} = \mathbf{U} \Delta \mathbf{U}^T$.

- (b) Donnez la loi du vecteur **Z**.
- (c) Montrez que ΔZ est indépendant de $(I_n \Delta)Z$.
- (d) Montrez que $U\Delta Z = PY$ et $U(I_n \Delta)Z = P^{\perp}Y$.
- (e) En déduire l'énoncé (ii).
- 4. On cherche dans cette question à montrer le lemme intermédiaire suivant. Soit $\mathbf{X} \sim \mathcal{N}(\mathbf{m}, \mathbf{\Sigma})$ une variable aléatoire de dimension q, avec $\mathbf{\Sigma}$ une matrice symétrique définie positive. Alors la variable $\rho = (\mathbf{X} \mathbf{m})^T \mathbf{\Sigma}^{-1} (\mathbf{X} \mathbf{m})$ suit la loi χ_q^2 du chi deux à q degrés de libertés.
 - (a) Montrez le lemme dans le cas q = 1.
 - (b) Dans le cas général, justifiez l'existence de Σ^{-1} , et montrez qu'il existe une matrice \mathbf{V} inversible telle que $\Sigma^{-1} = \mathbf{V}^T \mathbf{V}$.
 - (c) Donnez la loi de $\tilde{\mathbf{X}} = \mathbf{V}(\mathbf{X} \mathbf{m})$.
 - (d) En déduire que $\|\tilde{\mathbf{X}}\|^2 \sim \chi_q^2$.
 - (e) Concluez la démonstration du lemme en montrant que $\|\tilde{\mathbf{X}}\|^2 = (\mathbf{X} \mathbf{m})^T \mathbf{\Sigma}^{-1} (\mathbf{X} \mathbf{m})$.
- 5. On s'interesse maintenant au terme quadratique de (iii). On note $\mathbf{Z}_p = (\mathbf{Z})_{1 \leq i \leq p}$ le vecteur contenant les p premières coordonées du vecteur \mathbf{Z} défini ci-dessus.
 - (a) Montrez : $\|\mathbf{P}(\mathbf{Y} \boldsymbol{\mu})\|^2 = (\Delta \mathbf{U}^T \mathbf{Y} \Delta \mathbf{U}^T \boldsymbol{\mu})^T (\Delta \mathbf{U}^T \mathbf{Y} \Delta \mathbf{U}^T \boldsymbol{\mu}).$
 - (b) En déduire : $\|\mathbf{P}(\mathbf{Y} \boldsymbol{\mu})\|^2 = (\mathbf{Z}_p \mathbb{E}[\mathbf{Z}_p])^T (\mathbf{Z}_p \mathbb{E}[\mathbf{Z}_p])$.
 - (c) En utilisant le lemme ci-dessus, en déduire que $\frac{1}{\sigma^2} \|\mathbf{P}(\mathbf{Y} \boldsymbol{\mu})\|^2 \sim \chi_p^2$.
 - (d) Concluez la démonstration de l'énoncé (iii).