TD 3 : Sélection de modèle

Exercice 1. Fisher global

- 1. Rappeler la définition des lois du chi-deux, de Student, et de Fisher.
- 2. On se place dans le cadre d'une régression linéaire gaussienne multiple $Y = X\beta + \varepsilon$. Rappeler les expressions et les lois de $\hat{\beta}$ et $\hat{\sigma}^2$.
- 3. En déduire que la statistique de test de Fisher global

$$F = \frac{1}{p\hat{\sigma}^2} \hat{\beta}^T (X^T X) \hat{\beta}$$

suit sous H_0 une loi de Fisher de paramètre p, n-p.

- 4. Réécrire F en fonction de Y et \hat{Y} .
- 5. Que teste cette statistique? Que peut-on en dire en pratique?

Exercice 2. Fisher emboîté

- 1. Rappeler le test entre modèles emboîtés et donner la statistique de test F en fonction de Y, \hat{Y} , et \hat{Y}_0 . Dans quel contexte retrouve-t-on l'expression de l'exercice 1?
- 2. Réécrire cette quantité en fonction de SCR et SCR_0 .
- 3. Montrer que

$$F = \frac{n-p}{q} \frac{R^2 - R_0^2}{1 - R^2} \,,$$

où \mathbb{R}^2 et \mathbb{R}^2_0 sont les coefficients de détermination associés respectivement au modèle complet et au modèle emboîté.

Exercice 3. Tests de Student et de Fisher

On considère le modèle de régression linéaire classique à n variables et p prédicteurs:

$$\mathbf{v} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}.$$

On souhaite montrer l'équivalence entre les tests de Student et de Fisher pour tester la nullité du dernier coefficient:

$$\mathcal{H}_0: \beta_p = 0$$
 contre $\mathcal{H}_1: \beta_p \neq 0$.

- 1. Soient $U \sim \mathcal{N}(0,1)$ et $V \sim \chi_k^2$ deux variables aléatoires indépendantes (avec k un entier strictement positif). Quelle est la loi de $T = \frac{U}{\sqrt{V/k}}$? Quelle est la loi de $F = T^2$?
- 2. Rappelez les hypothèses classiques du modèle linéaire gaussien. Quelles sont les dimensions de \mathbf{y} , \mathbf{X} , $\boldsymbol{\beta}$ et $\boldsymbol{\epsilon}$? On se place sous ces hypothèses dans toute la suite.
- 3. Rappelez la statistique T_p du test de Student pour la nulité du coefficient β_p , et sa loi sous l'hypothèse \mathcal{H}_0 .
- 4. On décompose X en blocs:

$$\mathbf{X} = [\mathbf{X}_0 \ \mathbf{X}_p]$$
 avec $\mathbf{X}_0 = [\mathbf{X}_1 \ \cdots \ \mathbf{X}_{p-1}]$,

où \mathbf{X}_0 est la matrice de taille $n \times (p-1)$ des (p-1) premières colonnes de \mathbf{X} . Écrivez les deux modèles emboîtés qui correspondent au test de la nullité du coefficient β_p . Donnez la statistique F_p du test de Fisher correspondant, et sa loi sous \mathcal{H}_0 .

5. En utilisant la décomposition $\mathbf{X} = [\mathbf{X}_0 \ \mathbf{X}_p]$, donnez la matrice $\mathbf{X}^T \mathbf{X}$ sous forme de 4 blocs.

6. On admet le lemme d'inversion matricielle par blocs suivant:

Soit M une matrice par blocs, $\mathbf{M} = \begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{pmatrix}$, avec \mathbf{A} , \mathbf{B} , \mathbf{C} , \mathbf{D} de dimensions respectives $q \times q$, $q \times r$, $r \times q$, et $r \times r$. On suppose \mathbf{M} et \mathbf{A} inversibles. Alors, on peut écrire \mathbf{M}^{-1} sous la forme:

$$\mathbf{M}^{-1} = \begin{pmatrix} \mathbf{E} & \mathbf{F} \\ \mathbf{G} & \mathbf{H} \end{pmatrix}, \quad avec \quad \mathbf{H}^{-1} = \mathbf{D} - \mathbf{C}\mathbf{A}^{-1}\mathbf{B}.$$

Montrez la relation suivante :

$$\frac{1}{[(\mathbf{X}^T\mathbf{X})^{-1}]_{pp}} = \mathbf{X}_p^T\mathbf{X}_p - \mathbf{X}_p^T\mathbf{X}_0(\mathbf{X}_0^T\mathbf{X}_0)^{-1}\mathbf{X}_0^T\mathbf{X}_p$$

7. On note \mathbf{P}_0 la matrice de projection orthogonale sur l'espace \mathcal{M}_0 engendré par les p-1 colonnes de \mathbf{X}_0 , et \mathbf{P} la matrice de projection orthogonale sur \mathcal{M} engendré par les p colonnes de \mathbf{X} .

Donnez les expressions de \mathbf{P}_0 et \mathbf{P} en fonction de, respectivement, \mathbf{X}_0 et \mathbf{X} , puis montrez la relation suivante :

$$\frac{1}{[(\mathbf{X}^T\mathbf{X})^{-1}]_{pp}} = \mathbf{X}_p^T (\mathbf{I}_n - \mathbf{P}_0) \mathbf{X}_p.$$

- 8. On décompose $\hat{\boldsymbol{\beta}}$ en deux blocs: $\hat{\boldsymbol{\beta}} = \begin{pmatrix} \hat{\boldsymbol{\beta}}_0 \\ \hat{\beta}_p \end{pmatrix}$. Montrez : $\mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}_0\hat{\boldsymbol{\beta}}_0 + \mathbf{X}_p\hat{\beta}_p$.
- 9. On note $\hat{\mathbf{y}}$ et $\hat{\mathbf{y}}_0$ les projetés orthogonaux de \mathbf{y} sur \mathcal{M} et \mathcal{M}_0 . Justifiez l'égalité:

$$\hat{\mathbf{y}}_0 = \mathbf{P}_0 \hat{\mathbf{y}}.$$

En déduire:

$$\hat{\mathbf{y}} - \hat{\mathbf{y}}_0 = (\mathbf{I}_n - \mathbf{P}_0) \mathbf{X}_p \hat{\beta}_p$$

10. Montrez que $T_p^2 = F_p$. En déduire l'équivalence des deux tests.

Exercice 4. Estimation sous contrainte Dans le modèle de régression linéaire, il arrive parfois que l'on souhaite imposer des contraintes linéaires à β , par exemple que sa première coordonnée soit égale à 1. Nous supposerons en général que nous imposons q contraintes linéairement indépendantes à β , ce qui s'écrit sous la forme : $R\beta = r$, où R est une matrice $q \times p$ de rang q < p et r un vecteur de taille q. Montrer que l'estimateur des moindres carrés sous contraintes s'écrit:

$$\hat{\beta}_c = \hat{\beta} + (X^T X)^{-1} R^T \left[R(X^T X)^{-1} R^T \right]^{-1} (r - R\hat{\beta}).$$

Montrez qu'il est sans biais, et que sa variance est égale à :

$$\mathbf{V}[\hat{\beta}_c] = \mathbf{V}[\hat{\beta}] - \sigma^2 (X^T X)^{-1} R^T (R(X^T X)^{-1} R^T)^{-1} R(X^T X)^{-1}.$$