Introduction aux Modèles Mixtes

Paul Bastide

2025-04-30

From ANOVA to Mixed Models

Sleep Study

library(lme4)
kable(head(sleepstudy))
Reaction Days Subject
249.5600 0 308
258.7047 1 308
250.8006 2 308
321.4398 3 308
356.8519 4 308
414.6901 5 308

Sleep Study

ANCOVA

For observation \(i\) of group \(k\): \[ y_{i,k} = \mu + \alpha_k + (\beta + \gamma_k) \times x_{i} + \epsilon_{i, k} \]

  • \(\mu\) the intercept
  • \(\alpha_k\) the specific effect of group \(k\) on the intercept
  • \(\gamma_k\) the specific effect of group \(k\) on the slope
  • \(\epsilon_{i, k} \sim \mathcal{N}(0, \sigma^2)\) iid noise.

Problem: What if there are many groups, with few observations?
\(\to\) Estimation problem.

ANCOVA

fit_ancova <- lm(Reaction ~ Days * Subject, data = sleepstudy)
summary(fit_ancova)

Call:
lm(formula = Reaction ~ Days * Subject, data = sleepstudy)

Residuals:
     Min       1Q   Median       3Q      Max 
-106.397  -10.692   -0.177   11.417  132.510 

Coefficients:
                Estimate Std. Error t value Pr(>|t|)    
(Intercept)      244.193     15.042  16.234  < 2e-16 ***
Days              21.765      2.818   7.725 1.74e-12 ***
Subject309       -39.138     21.272  -1.840 0.067848 .  
Subject310       -40.708     21.272  -1.914 0.057643 .  
Subject330        45.492     21.272   2.139 0.034156 *  
Subject331        41.546     21.272   1.953 0.052749 .  
Subject332        20.059     21.272   0.943 0.347277    
Subject333        30.826     21.272   1.449 0.149471    
Subject334        -4.030     21.272  -0.189 0.850016    
Subject335        18.842     21.272   0.886 0.377224    
Subject337        45.911     21.272   2.158 0.032563 *  
Subject349       -29.081     21.272  -1.367 0.173728    
Subject350       -18.358     21.272  -0.863 0.389568    
Subject351        16.954     21.272   0.797 0.426751    
Subject352        32.179     21.272   1.513 0.132535    
Subject369        10.775     21.272   0.507 0.613243    
Subject370       -33.744     21.272  -1.586 0.114870    
Subject371         9.443     21.272   0.444 0.657759    
Subject372        22.852     21.272   1.074 0.284497    
Days:Subject309  -19.503      3.985  -4.895 2.61e-06 ***
Days:Subject310  -15.650      3.985  -3.928 0.000133 ***
Days:Subject330  -18.757      3.985  -4.707 5.84e-06 ***
Days:Subject331  -16.499      3.985  -4.141 5.88e-05 ***
Days:Subject332  -12.198      3.985  -3.061 0.002630 ** 
Days:Subject333  -12.623      3.985  -3.168 0.001876 ** 
Days:Subject334   -9.512      3.985  -2.387 0.018282 *  
Days:Subject335  -24.646      3.985  -6.185 6.07e-09 ***
Days:Subject337   -2.739      3.985  -0.687 0.492986    
Days:Subject349   -8.271      3.985  -2.076 0.039704 *  
Days:Subject350   -2.261      3.985  -0.567 0.571360    
Days:Subject351  -15.331      3.985  -3.848 0.000179 ***
Days:Subject352   -8.198      3.985  -2.057 0.041448 *  
Days:Subject369  -10.417      3.985  -2.614 0.009895 ** 
Days:Subject370   -3.709      3.985  -0.931 0.353560    
Days:Subject371  -12.576      3.985  -3.156 0.001947 ** 
Days:Subject372  -10.467      3.985  -2.627 0.009554 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 25.59 on 144 degrees of freedom
Multiple R-squared:  0.8339,    Adjusted R-squared:  0.7936 
F-statistic: 20.66 on 35 and 144 DF,  p-value: < 2.2e-16

Mixed Model

For observation \(i\) of group \(k\): \[ y_{i,k} = \mu + A_{k} + (\beta + G_k) \times x_{i} + \epsilon_i \]

  • \(\mu\) the intercept
  • \(A_k \sim \mathcal{N}(0, s_A^2)\) iid effect of group \(k\) on the intercept
  • \(G_k \sim \mathcal{N}(0, s_G^2)\) iid effect of group \(k\) on the slope
  • \(\epsilon_{ik} \sim \mathcal{N}(0, \sigma^2)\) iid noise.

\(\to\) Replace fixed effects with random effects.

\(\to\) Idea: works when there are many groups in a factor.

Mixed Models

Mixed Model - Simple Case

For observation \(i\) of group \(k\): \[ y_{i,k} = \mu + A_{k} + \epsilon_i \]

  • \(A_k \sim \mathcal{N}(0, s_A^2)\) iid
  • \(\epsilon_{ik} \sim \mathcal{N}(0, \sigma^2)\) iid noise.

\[ \mathbb{E}[y_{i,k}] = \mu \]

\[ \mathbb{V}[y_{i,k}] = s_A^2 + \sigma^2 \]

\[ \mathbb{C}[y_{i,k}, y_{i',k'}] = \begin{cases} s_A^2 & \text{if } k = k' \\ 0 & \text{otherwise.} \end{cases} \]

Mixed Model - Simple Case

ANOVA \[ y_{i,k} = \mu + \alpha_{k} + \epsilon_{ik} \quad \epsilon_{i,k} \sim \mathcal{N}(0, \sigma^2) ~ iid \]

\[ \mathcal{H}_0: \alpha_1 = \cdots = \alpha_K = 0 \]

Mixed Model \[ y_{i,k} = \mu + A_{k} + \epsilon_{ik} \quad A_k \sim \mathcal{N}(0, s_A^2) ~ iid \quad \epsilon_{i,k} \sim \mathcal{N}(0, \sigma^2) ~ iid \]

\[ \mathcal{H}_0: s_A^2 = 0 \] Different models but same question: does the structure of the population in groups impact the mean of \(y_{i,k}\) ?

Mixed Model - Simple Case

\[ y_{i,k} = \mu + A_{k} + \epsilon_i \]

\[ \mathbf{y} = \mu\mathbf{1}_{nK} + \mathbf{Z}\mathbf{U} + \boldsymbol{\epsilon} \]

\[ \mathbf{y} = \text{vec}((y_{i,k})_{i, k}) = \begin{pmatrix} y_{1,1}\\ y_{2,1}\\ \vdots\\ y_{n, 1}\\ y_{1, 2}\\ \vdots\\ y_{n, 2}\\ \vdots\\ y_{n, K} \end{pmatrix} \qquad \mathbf{Z} = \begin{pmatrix} 1 & 0 & \cdots & 0\\ \vdots & \vdots & \vdots & \vdots\\ 1 & 0 & \cdots & 0\\ 0 & 1 & \cdots & 0\\ \vdots & \vdots & \vdots & \vdots\\ 0 & 1 & \cdots & 0\\ 0 & 0 & \cdots & 1\\ \vdots & \vdots & \vdots & \vdots\\ 0 & 0 & \cdots & 1\\ \end{pmatrix} \qquad \begin{aligned} \mathbf{U} &\sim \mathcal{N}(\mathbf{0}, s_A^2\mathbf{I}_{K}) \\ \boldsymbol{\epsilon} &\sim \mathcal{N}(\mathbf{0}, \sigma^2\mathbf{I}_{nK}) \end{aligned} \]

Mixed Model - Simple Case

\[ y_{i,k} = \mu + A_{k} + \epsilon_i \]

\[~\]

\[ \mathbf{y} = \mu\mathbf{1}_{nK} + \mathbf{E} \qquad \mathbf{E} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}) \]

\[~\]

\[ \mathbf{\Sigma} = \begin{pmatrix} \mathbf{R} & \mathbf{0} & \cdots & \mathbf{0}\\ \mathbf{0} & \ddots & \ddots & \vdots\\ \vdots & \ddots & \ddots & \mathbf{0}\\ \mathbf{0} & \cdots & \mathbf{0} & \mathbf{R}\\ \end{pmatrix} \qquad \mathbf{R} = \begin{pmatrix} \sigma^2 + s_A^2 & s_A^2 & \cdots & s_A^2\\ s_A^2 & \ddots & \ddots & \vdots\\ \vdots & \ddots & \ddots & s_A^2\\ s_A^2 & \cdots & s_A^2 & \sigma^2 + s_A^2\\ \end{pmatrix} \]

Mixed Model - General Case

Linear Model \[ \mathbf{y} \sim \mathcal{N}(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}_n) \]

\[~\]

Mixed Model \[ \mathbf{y} \sim \mathcal{N}(\mathbf{X}\boldsymbol{\beta}, \mathbf{\Sigma}) \]

\[~\] with \(\mathbf{\Sigma}\) structured covariance matrix.

Mixed Model - Sleep

For observation \(i\) of group \(k\): \[ y_{i,k} = \mu + A_{k} + (\beta + G_k) \times x_{i} + \epsilon_i \]

  • \(A_k \sim \mathcal{N}(0, s_A^2)\) iid effect of group \(k\) on the intercept
  • \(G_k \sim \mathcal{N}(0, s_G^2)\) iid effect of group \(k\) on the slope
  • \(\epsilon_{ik} \sim \mathcal{N}(0, \sigma^2)\) iid noise.

\[ \mathbb{E}[y_{i,k}] = \mu + \beta x_i \]

\[ \mathbb{V}[y_{i,k}] = s_A^2 + s_G^2x_i^2 + \sigma^2 \]

\[ \mathbb{C}[y_{i,k}, y_{i',k'}] = \begin{cases} s_A^2 + s_G^2 x_i x_{i'}& \text{if } k = k' \\ 0 & \text{otherwise.} \end{cases} \]

Sleep dataset example

Mixed Model - Sleep

\[ y_{i,k} = \mu + A_{k} + (\beta + G_k) \times x_{i} + \epsilon_i \]

\[ \mathbf{y} = \mu\mathbf{1}_{nK} + \beta \mathbf{x} + \mathbf{Z}_1\mathbf{U}_1 + \mathbf{Z}_2\mathbf{U}_2 + \boldsymbol{\epsilon} \]

\[ \mathbf{y} = \begin{pmatrix} y_{1,1}\\ y_{2,1}\\ \vdots\\ y_{n, 1}\\ y_{1, 2}\\ \vdots\\ y_{n, 2}\\ \vdots\\ y_{n, K} \end{pmatrix} \qquad \mathbf{Z}_2 = \begin{pmatrix} x_1 & 0 & \cdots & 0\\ \vdots & \vdots & \vdots & \vdots\\ x_n & 0 & \cdots & 0\\ 0 & x_1 & \cdots & 0\\ \vdots & \vdots & \vdots & \vdots\\ 0 & x_n & \cdots & 0\\ 0 & 0 & \cdots & x_1\\ \vdots & \vdots & \vdots & \vdots\\ 0 & 0 & \cdots & x_n\\ \end{pmatrix} \qquad \begin{aligned} \mathbf{U}_1 &\sim \mathcal{N}(\mathbf{0}, s_A^2\mathbf{I}_{K}) \\ \mathbf{U}_2 &\sim \mathcal{N}(\mathbf{0}, s_G^2\mathbf{I}_{K}) \\ \boldsymbol{\epsilon} &\sim \mathcal{N}(\mathbf{0}, \sigma^2\mathbf{I}_{nK}) \end{aligned} \]

Mixed Model - Sleep

\[ y_{i,k} = \mu + A_{k} + (\beta + G_k) \times x_{i} + \epsilon_i \]

\[ \mathbf{y} = \mu\mathbf{1}_{nK} + \beta \mathbf{x} + \mathbf{Z}_1\mathbf{U}_1 + \mathbf{Z}_2\mathbf{U}_2 + \boldsymbol{\epsilon} \]

\[ \mathbf{y} = \mu\mathbf{1}_{nK} + \beta\mathbf{x} + \mathbf{E} \qquad \mathbf{E} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}) \]

\[ \mathbf{\Sigma} = \sigma^2 \mathbf{I} + s_A^2 \mathbf{Z}_1^T \mathbf{Z}_1 + s_G^2 \mathbf{Z}_2^T \mathbf{Z}_2 = \begin{pmatrix} \mathbf{R} & \mathbf{0} & \cdots & \mathbf{0}\\ \mathbf{0} & \ddots & \ddots & \vdots\\ \vdots & \ddots & \ddots & \mathbf{0}\\ \mathbf{0} & \cdots & \mathbf{0} & \mathbf{R}\\ \end{pmatrix} \]

\[ \mathbf{R} = \begin{pmatrix} \sigma^2 + s_A^2 + s_G^2 x_1^2 & s_A^2 + s_G^2 x_2x_1 & \cdots & s_A^2 + s_G^2 x_nx_1\\ s_A^2 + s_G^2 x_1x_2 & \ddots & \ddots & \vdots\\ \vdots & \ddots & \ddots & s_A^2 + s_G^2 x_{n-1}x_n\\ s_A^2 + s_G^2 x_1x_n & \cdots & s_A^2 + s_G^2 x_nx_{n-1} & \sigma^2 + s_A^2 + s_G^2 x_nx_n\\ \end{pmatrix} \]

Sleep

fit_lmer <- lmer(Reaction ~ Days + (Days | Subject), data = sleepstudy)
fit_lmer
Linear mixed model fit by REML ['lmerMod']
Formula: Reaction ~ Days + (Days | Subject)
   Data: sleepstudy
REML criterion at convergence: 1743.628
Random effects:
 Groups   Name        Std.Dev. Corr
 Subject  (Intercept) 24.741       
          Days         5.922   0.07
 Residual             25.592       
Number of obs: 180, groups:  Subject, 18
Fixed Effects:
(Intercept)         Days  
     251.41        10.47  

Examples of Mixed Models

Mixed Model - General Case

Linear Model \[ \mathbf{y} \sim \mathcal{N}(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}_n) \]

\[~\]

Mixed Model \[ \mathbf{y} \sim \mathcal{N}(\mathbf{X}\boldsymbol{\beta}, \mathbf{\Sigma}) \]

\[~\] with \(\mathbf{\Sigma}\) structured covariance matrix.

\[~\] \(\to\) General fit and tests more difficult

Mixed Model - Longitudinal

Repeated Measures \[ y_{ikt} = \mu + \alpha_k + \beta_t + \gamma_{kt} + \epsilon_{ikt} \]

  • Animal \(i\)
  • Food \(k\)
  • Time \(t\)

\[ \mathbb{C}[y_{i,k,t}, y_{i',k',t'}] = \begin{cases} \sigma^2 \rho & \text{if } (i,k) = (i',k') \\ 0 & \text{otherwise.} \end{cases} \] \[~\] \(\to\) Constant covariance between time measures.

Mixed Model - Longitudinal

Repeated Measures \[ y_{ikt} = \mu + \alpha_k + \beta_t + \gamma_{kt} + \epsilon_{ikt} \]

  • Animal \(i\)
  • Food \(k\)
  • Time \(t\)

\[ \mathbb{C}[y_{i,k,t}, y_{i',k',t'}] = \begin{cases} \sigma^2 \rho^{|t-t'|} & \text{if } (i,k) = (i',k') \\ 0 & \text{otherwise.} \end{cases} \] \[~\] \(\to\) AR(1) (with \(|\rho| < 1\))

Mixed Model - Spatial

Spatial Measures \[ \mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon} \]

\[ \mathbb{C}[y_{i}, y_{i'}] = \begin{cases} \gamma^2 e^{-d(i,i')/\rho} & \text{if } i \neq i' \\ \sigma^2 + \gamma^2 & \text{if } i = i' \end{cases} \]

  • \(d(i,i')\): distance between locations \(i\) and \(i'\)
  • \(\rho\): range (larger implies more correlations)
  • \(\gamma^2\) spatial variance
  • \(\sigma^2\) nugget

Mixed Model - General Case

Mixed Model \[ \mathbf{y} \sim \mathcal{N}(\mathbf{X}\boldsymbol{\beta}, \mathbf{\Sigma}(\boldsymbol{\psi})) \] with \(\mathbf{\Sigma}(\psi)\) depends on paramaters \(\boldsymbol{\psi}\)

Mixed Model - Simple Case

\[ \mathbf{y} \sim \mathcal{N}(\mathbf{X}\boldsymbol{\beta}, \mathbf{\Sigma}) \]

Special case: \[ \mathbf{\Sigma} = \sigma^2 \mathbf{C} \] with \(\mathbf{C}\) known.

Then: \[ \hat{\boldsymbol{\beta}} = (\mathbf{X}^{T}\mathbf{C}^{-1}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{C}^{-1}\mathbf{y} \]

\[ \hat{\sigma}^2 = \frac{\|\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}} \|^2_{\mathbf{C}^{-1}}}{n-p} = \frac{(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})^T \mathbf{C}^{-1}(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})}{n-p} \]

Proof: Use Cholesky decomposition.

Mixed Model - Maximum Likelihood

Mixed Model \[ \mathbf{y} \sim \mathcal{N}(\mathbf{X}\boldsymbol{\beta}, \mathbf{\Sigma}(\boldsymbol{\psi})) \]

Maximum-Likelihood Estimators: \[ \hat{\boldsymbol{\beta}}, \hat{\boldsymbol{\psi}} = \underset{\boldsymbol{\beta}, \boldsymbol{\psi}}{\operatorname{argmax}} \log L(\boldsymbol{\beta}, \sigma^2 | \mathbf{y}) \]

\[ \hat{\boldsymbol{\beta}}, \hat{\boldsymbol{\psi}} = \underset{\boldsymbol{\beta}, \boldsymbol{\psi}}{\operatorname{argmin}} \left\{ \log |\mathbf{\Sigma}(\boldsymbol{\psi})| + (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T \mathbf{\Sigma}(\boldsymbol{\psi})^{-1}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) \right\} \]

\[ S(\boldsymbol{\beta}) = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T \mathbf{\Sigma}(\boldsymbol{\psi})^{-1}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) \]

Mixed Model - Maximum Likelihood

\[ S(\boldsymbol{\beta}) = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T \mathbf{\Sigma}(\boldsymbol{\psi})^{-1}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) \]

\[ \nabla S(\hat{\boldsymbol{\beta}}) = 2 \mathbf{X}^T\mathbf{\Sigma}(\boldsymbol{\psi})^{-1}\mathbf{X}\hat{\boldsymbol{\beta}} - 2 \mathbf{X}^T\mathbf{\Sigma}(\boldsymbol{\psi})^{-1}\mathbf{y} = 0 \]

\[ \hat{\boldsymbol{\beta}} = h(\boldsymbol{\psi}) = (\mathbf{X}^T\mathbf{\Sigma}(\boldsymbol{\psi})^{-1}\mathbf{X})^{-1} \mathbf{X}^T\mathbf{\Sigma}(\boldsymbol{\psi})^{-1}\mathbf{y} \]

Maximisation:

\[ \hat{\boldsymbol{\psi}} = \underset{\boldsymbol{\psi}}{\operatorname{argmin}} \left\{ \log |\mathbf{\Sigma}(\boldsymbol{\psi})| + (\mathbf{y} - \mathbf{X}h(\boldsymbol{\psi}))^T \mathbf{\Sigma}(\boldsymbol{\psi})^{-1}(\mathbf{y} - \mathbf{X}h(\boldsymbol{\psi})) \right\} \]

\[ \hat{\boldsymbol{\beta}} = h(\hat{\boldsymbol{\psi}}) \]

\(\to\) Optimization in \(\boldsymbol{\psi}\) can be complex.

Mixed Model - Restricted Likelihood

Linear Model \[ \hat{\sigma}^2_{ML} = \frac{\|\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}} \|^2}{n} \qquad \text{vs} \qquad \hat{\sigma}^2_{REML} = \frac{\|\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}} \|^2}{n-p} \] \[ \hat{\sigma}^2_{REML} = \underset{\sigma^2}{\operatorname{argmax}} \log L(0, \sigma^2 | \mathbf{P}^{\mathbf{X}^\bot}\mathbf{y}) \]

\[ \mathbf{P}^{\mathbf{X}^\bot}\mathbf{y} = \hat{\boldsymbol{\epsilon}} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{P}^{\mathbf{X}^\bot}) \]

\[ \hat{\sigma}^2_{REML} = \underset{\sigma^2}{\operatorname{argmax}} \left\{ \log |\sigma^2 \mathbf{P}^{\mathbf{X}^\bot}| + (\mathbf{P}^{\mathbf{X}^\bot}\mathbf{y})^T (\sigma^2 \mathbf{P}^{\mathbf{X}^\bot})^{-1}(\mathbf{P}^{\mathbf{X}^\bot}\mathbf{y}) \right\} \]

\[ \hat{\sigma}^2_{REML} = \underset{\sigma^2}{\operatorname{argmax}} \left\{ (n-p) \log(\sigma^2) + \frac{1}{\sigma^2} \|\mathbf{P}^{\mathbf{X}^\bot}\mathbf{y}\|^2 \right\} \]

Mixed Model - Restricted Likelihood

Mixed Model \[ \mathbf{y} \sim \mathcal{N}(\mathbf{X}\boldsymbol{\beta}, \mathbf{\Sigma}(\boldsymbol{\psi})) \]

Let \(\mathbf{T}\) a \((n-p)\times n\) such that \(\mathbf{T}\mathbf{X}=\mathbf{0}\). \[ \tilde{\mathbf{y}} = \mathbf{T}\mathbf{y} \sim \mathcal{N}(\mathbf{0}, \mathbf{T}^T\mathbf{\Sigma}(\boldsymbol{\psi})\mathbf{T}) \]

\[ \hat{\boldsymbol{\psi}}_{REML} = \underset{\boldsymbol{\psi}}{\operatorname{argmax}} \log L(\boldsymbol{\psi} | \tilde{\mathbf{y}}) \]

\(\to\) Independent from \(\boldsymbol{\beta}\).

\(\to\) Independent from the choice of \(\mathbf{T}\).

\(\to\) Often, \(\mathbf{T} = \mathbf{P}^{\mathbf{X}^\bot}\).

Perspectives

Hasty Summary

\[ \mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon} \]

  • \(\mathbf{y}\) quantitative response
  • \(\mathbf{X}\) matrix of predictors (quantitative or qualitative)
  • \(\boldsymbol{\beta}\) deterministic coefficient
  • \(\boldsymbol{\epsilon}\) random, centered, null covariance (Gaussian)

Hasty Summary

  • Fit
    • OLS estimates of \(\hat{\boldsymbol{\beta}}\) and \(\hat{\sigma}^2\)
    • ML estimates and CI when Gaussian
  • Model Selection
    • \(t\) test the hypothesis “\(\boldsymbol{\beta}_k = 0\)” (when Gaussian)
    • \(F\) test of nested models (when Gaussian)
    • Penalized criteria (AIC, BIC, Mallow’s C_p, …)
  • Prediction
    • New points \(\hat{y}_{i}\), with CI (when Gaussian)
  • Diagnostics
    • Analysis of the residuals (outliers, Gaussian, …)
    • Analysis of the projection matrix (Leverage, Cook, …)

Perspectives and key words

  • Model Selection
    • hard to do when there are many predictors (see CM 5)
      \(\to\) regularized models (lasso, …), Bayesian Statistics
  • No independence assumption
    • Observations are correlated (e.g. geography)
      \(\to\) linear mixed models
  • \(\mathbf{y}\) is qualitative: classification
    • e.g. \(\mathbf{y} = 0/1\) is the response to a treatment (dose, …)
      \(\to\) logistic regression
  • No normal assumption
    • \(\mathbf{y}\) qualitative, counts, positive, …
      \(\to\) Generalized Linear Models (GLM)

Ressources