A Flexible Bayesian Framework to Study Viral Trait Evolution

Paul Bastide¹, Marc A. Suchard^{2,3,4} and Philippe Lemey¹

¹ Evolutionary and Computational Virology, Rega Institute, KU Leuven, Belgium
² Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, USA

- ³ Department of Biomathematics, David Geffen School of Medicine at UCLA, USA
- ⁴ Department of Human Genetics, David Geffen School of Medicine at UCLA, USA

21 January 2019

Phylogenetic Comparative Methods

- Various time scales: Myr decade.
- Various traits: morpho, geo, viral.

Question: Trait dynamics for an evolving organism ?

Outline

Models of Trait Evolution

- **2** Efficient Bayesian Inference
- **3** HIV Virulence Heritability Study

Models of Trait Evolution

Efficient Bayesian Inference HIV Virulence Heritability Study Multivariate Brownian Motion Multivariate Ornstein-Uhlenbeck

BM on a Tree

Models of Trait Evolution Efficient Bayesian Inference

Multivariate Brownian Motion Multivariate Ornstein-Uhlenbeck

BM on a Tree

EDS:d $X_t = \sigma d B_t$ Variance: $\mathbb{C}ov [Y_4; Y_5] = \sigma^2 \times V_{45}$ shared evolution timeExpectation: $\mathbb{E} [Y_i] = \mu$ ancestral root value

Models of Trait Evolution Efficient Bayesian Inference

Multivariate Brownian Motion Multivariate Ornstein-Uhlenbeck

BM on a Tree

Distribution: Normal

$$\mathbf{Y} \sim \mathcal{N}(\mu \mathbf{1}_n, \sigma^2 \mathbf{V})$$

Multivariate BM

Multivariate Brownian Motion Multivariate Ornstein-Uhlenbeck

Data: Vectors of p traits

$$\mathbf{Y}_i^T = (Y_{i1}, \ldots, Y_{ip})$$

Tree: Influenza H3N2 (Lemey et al., 2014)

Multivariate BM

Multivariate Brownian Motion Multivariate Ornstein-Uhlenbeck

Data: Vectors of *p* traits

$$\mathbf{Y}_i^T = (Y_{i1}, \ldots, Y_{ip})$$

EDS:d $\mathbf{X}_t = \mathbf{\Sigma} d \mathbf{B}_t$ $\mathbf{R} = \mathbf{\Sigma}^T \mathbf{\Sigma}$ Variance: $\mathbb{C}ov[Y_{ik}; Y_{jl}] = R_{kl} \times V_{ij}$ shared evolution timeExpectation: $\mathbb{E}[\mathbf{Y}_{\cdot k}] = \mu_k$ ancestral root value

Tree: Influenza H3N2 (Lemey et al., 2014)

Multivariate BM

Multivariate Brownian Motion Multivariate Ornstein-Uhlenbeck

Data: Vectors of *p* traits

$$\mathbf{Y}_i^T = (Y_{i1}, \ldots, Y_{ip})$$

Distribution: Matrix Normal

$$\mathbf{Y} \sim \mathcal{MN}(\mathbf{1}_n \boldsymbol{\mu}^T, \mathbf{V}, \mathbf{R})$$

$$\mathbb{V}$$
ar [vec (\mathbf{Y})] = $\mathbf{R} \otimes \mathbf{V}$

Tree: Influenza H3N2 (Lemey et al., 2014)

Multivariate Brownian Motion Multivariate Ornstein-Uhlenbeck

Ornstein-Uhlenbeck Modeling

$$dX_t = \alpha[\beta - X_t] dt + \sigma dB_t$$

Deterministic part:

- β : primary optimum (mechanistically defined).
- $\ln(2)/\alpha$: phylogenetic half live.

Stochastic part:

- X_t: trait value (actual optimum).
- $\sigma dB(t)$: Brownian fluctuations.

(Hansen, 1997)

Models of Trait Evolution

Efficient Bayesian Inference HIV Virulence Heritability Study Multivariate Brownian Motion Multivariate Ornstein-Uhlenbeck

OU on a Tree

Models of Trait Evolution Efficient Bayesian Inference

Multivariate Brownian Motion Multivariate Ornstein-Uhlenbeck

OU on a Tree

EDS:
$$d X_t = \alpha [\beta - X_t] d t + \sigma d B_t$$

Variance:
$$\mathbb{C}ov [Y_4; Y_5] = \frac{\sigma^2}{2\alpha} e^{-\alpha (V_4 + V_5)} (e^{2\alpha V_{45}} - 1)$$

Expectation:
$$\mathbb{E} [Y_i] = \mu e^{-\alpha V_i} + \beta (1 - e^{-\alpha V_i})$$

Multivariate Brownian Motion Multivariate Ornstein-Uhlenbeck

$$d \mathbf{X}_t = \mathbf{A}[\boldsymbol{\beta} - \mathbf{X}_t] d t + \boldsymbol{\Sigma} d \mathbf{B}_t$$

Multivariate Brownian Motion Multivariate Ornstein-Uhlenbeck

$$\mathrm{d}\,\mathbf{X}_t = \mathbf{A}[\boldsymbol{\beta} - \mathbf{X}_t]\,\mathrm{d}\,t + \boldsymbol{\Sigma}\,\mathrm{d}\,\mathbf{B}_t$$

Scalar:
$$\mathbf{A} = \begin{pmatrix} 0.1 & 0 \\ 0 & 0.1 \end{pmatrix}$$
 $\beta = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}$

Multivariate Brownian Motion Multivariate Ornstein-Uhlenbeck

d
$$\mathbf{X}_t = \mathbf{A}[\boldsymbol{\beta} - \mathbf{X}_t] d t + \mathbf{\Sigma} d \mathbf{B}_t$$

Diagonal: $\mathbf{A} = \begin{pmatrix} 0.1 & 0 \\ 0 & 0.3 \end{pmatrix} \qquad \boldsymbol{\beta} = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}$

Multivariate Brownian Motion Multivariate Ornstein-Uhlenbeck

$$d \mathbf{X}_{t} = \mathbf{A}[\boldsymbol{\beta} - \mathbf{X}_{t}] d t + \mathbf{\Sigma} d \mathbf{B}_{t}$$
Symmetric:
$$\mathbf{A} = \begin{pmatrix} 0.1 & 0.1 \\ 0.1 & 0.3 \end{pmatrix} \qquad \boldsymbol{\beta} = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}$$

Multivariate Brownian Motion Multivariate Ornstein-Uhlenbeck

$$\mathrm{d}\,\mathbf{X}_t = \mathbf{A}[\boldsymbol{\beta} - \mathbf{X}_t]\,\mathrm{d}\,t + \boldsymbol{\Sigma}\,\mathrm{d}\,\mathbf{B}_t$$

Diagonalizable in
$$\mathbb{R}$$
: $\mathbf{A} = \begin{pmatrix} -0.02 & -0.04 \\ 0.2 & 0.2 \end{pmatrix}$ $\boldsymbol{\beta} = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}$

Multivariate Brownian Motion Multivariate Ornstein-Uhlenbeck

Multivariate OU

$$d \mathbf{X}_t = \mathbf{A}[\beta - \mathbf{X}_t] d t + \mathbf{\Sigma} d \mathbf{B}_t$$

Diagonalizable: $\mathbf{A} = \mathbf{P} \mathbf{A} \mathbf{P}^{-1}$ $\lambda_k > 0$

Multivariate Brownian Motion Multivariate Ornstein-Uhlenbeck

Multivariate OU

$$d \mathbf{X}_t = \mathbf{A}[\boldsymbol{\beta} - \mathbf{X}_t] d t + \mathbf{\Sigma} d \mathbf{B}_t$$

Diagonalizable: $\mathbf{A} = \mathbf{P} \mathbf{A} \mathbf{P}^{-1}$ $\lambda_k > 0$

Expectation:

$$\mathbb{E}\left[\mathbf{Y}_{i}
ight]=\mu e^{-\mathbf{A}V_{i}}+eta(1-e^{-\mathbf{A}V_{i}})$$

Multivariate Brownian Motion Multivariate Ornstein-Uhlenbeck

Multivariate OU

$$d \mathbf{X}_t = \mathbf{A}[\boldsymbol{\beta} - \mathbf{X}_t] d t + \mathbf{\Sigma} d \mathbf{B}_t$$

Diagonalizable: $\mathbf{A} = \mathbf{P} \mathbf{A} \mathbf{P}^{-1}$ $\lambda_k > 0$

Expectation:

$$\mathbb{E}\left[\mathbf{Y}_{i}
ight]=\mu e^{-\mathbf{A}V_{i}}+eta(1-e^{-\mathbf{A}V_{i}})$$

Variance:

$$\mathbb{C} \text{ov} \left[\mathbf{Y}_{i}; \mathbf{Y}_{j} \right] = \mathbf{P} \left[\mathbf{W}_{ij} \odot \mathbf{P}^{-1} \mathbf{R} \mathbf{P}^{-T} \right] \mathbf{P}^{T}$$
$$\mathbf{W}_{ij} = \left[\frac{1}{\lambda_{q} + \lambda_{r}} e^{-\lambda_{q} V_{i}} e^{-\lambda_{r} V_{j}} \left(e^{(\lambda_{q} + \lambda_{r}) V_{ij}} - 1 \right) \right]_{1 \le q, r \le p}$$

Multivariate Brownian Motion Multivariate Ornstein-Uhlenbeck

Multivariate OU

$$d \mathbf{X}_t = \mathbf{A}[\boldsymbol{\beta} - \mathbf{X}_t] d t + \mathbf{\Sigma} d \mathbf{B}_t$$

Diagonalizable: $\mathbf{A} = \mathbf{P} \mathbf{A} \mathbf{P}^{-1}$ $\lambda_k > 0$

Expectation:
$$\mathbb{E}[\mathbf{Y}_i] = \mu e^{-\mathbf{A}V_i} + \beta(1 - e^{-\mathbf{A}V_i})$$

Variance:

$$\mathbb{C} \text{ov} \left[\mathbf{Y}_{i}; \mathbf{Y}_{j} \right] = \mathbf{P} \left[\mathbf{W}_{ij} \odot \mathbf{P}^{-1} \mathbf{R} \mathbf{P}^{-T} \right] \mathbf{P}^{T}$$
$$\mathbf{W}_{ij} = \left[\frac{1}{\lambda_{q} + \lambda_{r}} e^{-\lambda_{q} V_{i}} e^{-\lambda_{r} V_{j}} \left(e^{(\lambda_{q} + \lambda_{r}) V_{ij}} - 1 \right) \right]_{1 \le q, r \le p}$$

Distribution:

Still Gaussian.

No nice Kronecker product.

MCMC Sampling Using the Tree

Bayesian Phylogenetics

Goal:

$p(\theta, \mathcal{T}, \psi \mid \mathbf{Y}, \mathbf{S})$

MCMC Sampling Using the Tree

Bayesian Phylogenetics

Goal:

$p(\theta, \mathcal{T}, \psi \mid \mathbf{Y}, \mathbf{S}) \propto p(\mathbf{Y}, \mathbf{S} \mid \theta, \mathcal{T}, \psi) p(\theta, \mathcal{T}, \psi)$

MCMC Sampling Using the Tree

Bayesian Phylogenetics

Goal:

$$\begin{split} p(\theta, \mathcal{T}, \psi \mid \mathbf{Y}, \mathbf{S}) &\propto p(\mathbf{Y}, \mathbf{S} \mid \theta, \mathcal{T}, \psi) \, p(\theta, \mathcal{T}, \psi) \\ &\propto p(\mathbf{Y} \mid \theta, \mathcal{T}) \, p(\mathbf{S} \mid \mathcal{T}, \psi) \, p(\theta, \mathcal{T}, \psi) \end{split}$$

Assumption: **Y** and **S** independent conditionally on \mathcal{T} .

MCMC Sampling Using the Tree

Bayesian Phylogenetics

Goal:

$p(\theta, \mathcal{T}, \psi \mid \mathbf{Y}, \mathbf{S}) \propto p(\mathbf{Y}, \mathbf{S} \mid \theta, \mathcal{T}, \psi) p(\theta, \mathcal{T}, \psi)$ $\propto p(\mathbf{Y} \mid \theta, \mathcal{T}) p(\mathbf{S} \mid \mathcal{T}, \psi) p(\theta, \mathcal{T}, \psi)$ $\propto p(\mathbf{Y} \mid \theta, \mathcal{T}) p(\theta) p(\mathbf{S} \mid \mathcal{T}, \psi) p(\mathcal{T}, \psi)$

Assumption: **Y** and **S** independent conditionally on \mathcal{T} .

This talk: \mathcal{T} fixed.

MCMC

MCMC Sampling Using the Tree

Goal: Sample from $p(\theta \mid \mathbf{Y}) \propto p(\mathbf{Y} \mid \theta) p(\theta)$

MCMC

Goal: Sample from $p(\theta \mid \mathbf{Y}) \propto p(\mathbf{Y} \mid \theta) p(\theta)$

Metropolis - Hasting: Iterate:

- Draw θ^* in $q(\theta \mid \theta^t)$.
- Set $\theta^{(t+1)} = \theta^*$ with probability:

$$r_{t} = \min\left\{1, \frac{p\left(\mathbf{Y} \mid \boldsymbol{\theta}^{*}\right)}{p\left(\mathbf{Y} \mid \boldsymbol{\theta}^{t}\right)} \frac{p\left(\boldsymbol{\theta}^{*}\right)}{p\left(\boldsymbol{\theta}^{t}\right)} \frac{q(\boldsymbol{\theta}^{(t)} \mid \boldsymbol{\theta}^{*})}{q(\boldsymbol{\theta}^{*} \mid \boldsymbol{\theta}^{(t)})}\right\}.$$

MCMC

Goal: Sample from $p(\theta \mid \mathbf{Y}) \propto p(\mathbf{Y} \mid \theta) p(\theta)$

Metropolis - Hasting: Iterate:

- Draw θ^* in $q(\theta \mid \theta^t)$.
- Set $\theta^{(t+1)} = \theta^*$ with probability:

$$r_{t} = \min\left\{1, \frac{p\left(\mathbf{Y} \mid \boldsymbol{\theta}^{*}\right)}{p\left(\mathbf{Y} \mid \boldsymbol{\theta}^{t}\right)} \frac{p\left(\boldsymbol{\theta}^{*}\right)}{p\left(\boldsymbol{\theta}^{t}\right)} \frac{q(\boldsymbol{\theta}^{(t)} \mid \boldsymbol{\theta}^{*})}{q(\boldsymbol{\theta}^{*} \mid \boldsymbol{\theta}^{(t)})}\right\}.$$

Gibbs:

• Split
$$\boldsymbol{\theta} = (\boldsymbol{\theta}_{[1]}, \dots, \boldsymbol{\theta}_{[K]}).$$

• Draw θ^* in $p(\theta_{[k]}|\theta_{[-k]}^{(t)}, \mathbf{Y})$ so that $r_t = 1$.

MCMC Sampling Using the Tree

BM: Gibbs with Conjugate Priors

Likelihood:

 $\mathbf{Y}|\mathbf{R}, \boldsymbol{\mu} \sim \mathcal{MN}(\mathbf{1}_n \boldsymbol{\mu}^T, \mathbf{V}, \mathbf{R})$

BM: Gibbs with Conjugate Priors

Likelihood:

$$\mathbf{Y}|\mathbf{R}, \boldsymbol{\mu} \sim \mathcal{MN}(\mathbf{1}_n \boldsymbol{\mu}^T, \mathbf{V}, \mathbf{R})$$

Conjugate Priors:

 $egin{aligned} & \mathsf{R} \sim \mathcal{IW}(\mathsf{R}_0,
u) \ & \mu | \mathsf{R} \sim \mathcal{N}(oldsymbol{\mu}_0, \kappa_0^{-1}\mathsf{R}) \end{aligned}$

BM: Gibbs with Conjugate Priors

Likelihood:

$$\mathbf{Y}|\mathbf{R}, \boldsymbol{\mu} \sim \mathcal{MN}(\mathbf{1}_n \boldsymbol{\mu}^T, \mathbf{V}, \mathbf{R})$$

Conjugate Priors:

$$egin{aligned} & \mathbf{R} \sim \mathcal{IW}(\mathbf{R}_0,
u) \ & oldsymbol{\mu} | \mathbf{R} \sim \mathcal{N}(oldsymbol{\mu}_0, \kappa_0^{-1} \mathbf{R}) \end{aligned}$$

Gibbs:

$$\mathbf{R}|\mathbf{Y}, \boldsymbol{\mu} \sim \mathcal{IW}(\mathbf{R}_n, \nu_n)$$
 with $\mathbf{R}_n = f(\mathbf{Y}, \boldsymbol{\mu}, \mathbf{V})$

BM: Gibbs with Conjugate Priors

Likelihood:

$$\mathbf{Y}|\mathbf{R}, \boldsymbol{\mu} \sim \mathcal{MN}(\mathbf{1}_n \boldsymbol{\mu}^T, \mathbf{V}, \mathbf{R})$$

Conjugate Priors:

$$egin{aligned} & \mathbf{R} \sim \mathcal{IW}(\mathbf{R}_0,
u) \ & oldsymbol{\mu} | \mathbf{R} \sim \mathcal{N}(oldsymbol{\mu}_0, \kappa_0^{-1} \mathbf{R}) \end{aligned}$$

Gibbs:

$$\mathbf{R}|\mathbf{Y}, \boldsymbol{\mu} \sim \mathcal{IW}(\mathbf{R}_n, \nu_n) \quad \text{with} \quad \mathbf{R}_n = f(\mathbf{Y}, \boldsymbol{\mu}, \mathbf{V})$$

 \hookrightarrow Automatic sampling in the space of variance matrices.

BM: Gibbs with Conjugate Priors

Likelihood:

$$\mathbf{Y}|\mathbf{R}, \boldsymbol{\mu} \sim \mathcal{MN}(\mathbf{1}_n \boldsymbol{\mu}^T, \mathbf{V}, \mathbf{R})$$

Conjugate Priors:

$$egin{aligned} & \mathbf{R} \sim \mathcal{IW}(\mathbf{R}_0,
u) \ & oldsymbol{\mu} | \mathbf{R} \sim \mathcal{N}(oldsymbol{\mu}_0, \kappa_0^{-1} \mathbf{R}) \end{aligned}$$

Gibbs:

$$\mathbf{R}|\mathbf{Y}, \boldsymbol{\mu} \sim \mathcal{IW}(\mathbf{R}_n, \nu_n) \quad \text{with} \quad \mathbf{R}_n = f(\mathbf{Y}, \boldsymbol{\mu}, \mathbf{V})$$

 \hookrightarrow Automatic sampling in the space of variance matrices. :-)

OU: No Gibbs

MCMC Sampling Using the Tree

Likelihood:

 $\mathbf{Y}|\mathbf{A},\mathbf{R},\boldsymbol{\mu}
e \mathcal{M}\mathcal{N}$

OU: No Gibbs

Likelihood:

$\mathbf{Y}|\mathbf{A},\mathbf{R},\boldsymbol{\mu} eq\mathcal{M}\mathcal{N}$

MCMC Sampling

Using the Tree

Conjugate Priors: ???

OU: No Gibbs

Likelihood:

$\mathbf{Y}|\mathbf{A},\mathbf{R},\boldsymbol{\mu}\not\sim\mathcal{M}\mathcal{N}$

MCMC Sampling

Using the Tree

Conjugate Priors: ???

Gibbs: Not possible.
OU: No Gibbs

Likelihood:

 $\mathbf{Y}|\mathbf{A}, \mathbf{R}, \boldsymbol{\mu} \not\sim \mathcal{M}\mathcal{N}$

MCMC Sampling

Using the Tree

Conjugate Priors: ???

Gibbs: Not possible.

Metropolis - Hasting:

Need to sample in constrained spaces (A, R).

MCMC Sampling Using the Tree

MH in constrained space

Transformation:

$$f:egin{cases} \mathcal{C}_q o \mathbb{R}^q \ oldsymbol{ heta} \mapsto oldsymbol{
u} = f(oldsymbol{ heta}) \end{cases}$$

MCMC Sampling Using the Tree

MH in constrained space

Transformation:

$$f:egin{cases} \mathcal{C}_q o\mathbb{R}^q\ oldsymbol{ heta}\mapstooldsymbol{
u}=f(oldsymbol{ heta}) \end{cases}$$

Distribution: For a distribution π :

$$\pi_{\boldsymbol{ heta}}(\boldsymbol{ heta}) = \pi_{\boldsymbol{
u}}(f(\boldsymbol{ heta})) imes |J_f(\boldsymbol{ heta})|$$

MCMC Sampling Using the Tree

MH in constrained space

Transformation:

$$f:egin{cases} \mathcal{C}_{oldsymbol{q}}
ightarrow\mathbb{R}^{oldsymbol{q}}\ oldsymbol{ heta}\mapstooldsymbol{
u}=f(oldsymbol{ heta}) \end{cases}$$

Distribution: For a distribution π :

$$\pi_{\boldsymbol{ heta}}(\boldsymbol{ heta}) = \pi_{\boldsymbol{
u}}(f(\boldsymbol{ heta})) imes |J_f(\boldsymbol{ heta})|$$

Metropolis - Hasting: Iterate:

- Draw $\boldsymbol{\nu}^*$ in $q(\boldsymbol{\nu} \mid \boldsymbol{\nu}^t)$.
- Set $heta^{(t+1)}= heta^*=f^{-1}(
 u^*)$ with probability

$$r_{t} = \min\left\{1, \frac{p\left(\mathbf{Y} \mid \boldsymbol{\theta}^{*}\right)}{p\left(\mathbf{Y} \mid \boldsymbol{\theta}^{t}\right)} \frac{p\left(\boldsymbol{\theta}^{*}\right)}{p\left(\boldsymbol{\theta}^{t}\right)} \frac{q(\boldsymbol{\nu}^{(t)} \mid \boldsymbol{\nu}^{*})}{q(\boldsymbol{\nu}^{*} \mid \boldsymbol{\nu}^{(t)})} \frac{|J_{f}(\boldsymbol{\theta}^{(t)})|}{|J_{f}(\boldsymbol{\theta}^{*})|}\right\}$$

MCMC Sampling Using the Tree

Variance matrix: LKJ transformation

(Lewandowski et al., 2009)

(Lewandowski et al., 2009)

Decomposition: Use correlation matrix ${\boldsymbol{\mathsf{C}}}$

$$\mathbf{R} = \begin{pmatrix} \sigma_1 & 0 \\ & \ddots & \\ 0 & & \sigma_p \end{pmatrix} \begin{pmatrix} 1 & C_{kl} \\ & \ddots & \\ C_{kl} & 1 \end{pmatrix} \begin{pmatrix} \sigma_1 & 0 \\ & \ddots & \\ 0 & & \sigma_p \end{pmatrix}$$

(Lewandowski et al., 2009)

Decomposition: Use correlation matrix ${\boldsymbol{\mathsf{C}}}$

$$\mathbf{R} = \begin{pmatrix} \sigma_1 & 0 \\ & \ddots & \\ 0 & & \sigma_p \end{pmatrix} \begin{pmatrix} 1 & C_{kl} \\ & \ddots & \\ C_{kl} & & 1 \end{pmatrix} \begin{pmatrix} \sigma_1 & 0 \\ & \ddots & \\ 0 & & \sigma_p \end{pmatrix}$$

 σ : Real positive :-)

(Lewandowski et al., 2009)

Decomposition: Use correlation matrix ${\boldsymbol{\mathsf{C}}}$

$$\mathbf{R} = \begin{pmatrix} \sigma_1 & 0 \\ & \ddots & \\ 0 & & \sigma_p \end{pmatrix} \begin{pmatrix} 1 & C_{kl} \\ & \ddots & \\ C_{kl} & & 1 \end{pmatrix} \begin{pmatrix} \sigma_1 & 0 \\ & \ddots & \\ 0 & & \sigma_p \end{pmatrix}$$

- σ : Real positive :-)
- C: Correlation matrix :-(

(Lewandowski et al., 2009)

Decomposition: Use correlation matrix ${\boldsymbol{\mathsf{C}}}$

$$\mathbf{R} = \begin{pmatrix} \sigma_1 & 0 \\ & \ddots & \\ 0 & & \sigma_p \end{pmatrix} \begin{pmatrix} 1 & C_{kl} \\ & \ddots & \\ C_{kl} & & 1 \end{pmatrix} \begin{pmatrix} \sigma_1 & 0 \\ & \ddots & \\ 0 & & \sigma_p \end{pmatrix}$$

- σ : Real positive :-)
- C: Correlation matrix :-(

LKJ: Transformation on the space of correlation matrices.

(Lewandowski et al., 2009)

Decomposition: Use correlation matrix ${\boldsymbol{\mathsf{C}}}$

$$\mathbf{R} = \begin{pmatrix} \sigma_1 & 0 \\ & \ddots & \\ 0 & & \sigma_p \end{pmatrix} \begin{pmatrix} 1 & C_{kl} \\ & \ddots & \\ C_{kl} & & 1 \end{pmatrix} \begin{pmatrix} \sigma_1 & 0 \\ & \ddots & \\ 0 & & \sigma_p \end{pmatrix}$$

- σ : Real positive :-)
- C: Correlation matrix :-(
- LKJ: Transformation on the space of correlation matrices.
 - \hookrightarrow Use "vine" theory.
 - \hookrightarrow Easier and more efficient: Cholesky representation.

MCMC Sampling Using the Tree

Variance matrix: LKJ transformation

(Lewandowski et al., 2009)

$$\mathbf{C} = \mathbf{W}^{T} \mathbf{W} = \begin{pmatrix} 1 & W_{12} & \cdots & W_{1p} \\ & W_{22} & & \vdots \\ & & \ddots & \vdots \\ 0 & & & W_{pp} \end{pmatrix}^{T} \begin{pmatrix} 1 & W_{12} & \cdots & W_{1p} \\ & W_{22} & & \vdots \\ & & \ddots & \vdots \\ 0 & & & & W_{pp} \end{pmatrix}$$

MCMC Sampling Using the Tree

Variance matrix: LKJ transformation

(Lewandowski et al., 2009)

$$\mathbf{C} = \mathbf{W}^{T} \mathbf{W} = \begin{pmatrix} 1 & W_{12} & \cdots & W_{1p} \\ & W_{22} & & \vdots \\ & & \ddots & \vdots \\ 0 & & & W_{pp} \end{pmatrix}^{T} \begin{pmatrix} 1 & W_{12} & \cdots & W_{1p} \\ & W_{22} & & \vdots \\ & & \ddots & \vdots \\ 0 & & & & W_{pp} \end{pmatrix}$$

 $\begin{array}{l} \hookrightarrow \text{ Each column } k \text{ is in the half euclidian unit sphere } \mathcal{S}_k^h(\mathbb{R}): \\ \bullet \ W_{1k}^2 + \cdots + W_{kk}^2 = 1 \qquad (\text{correlation}) \\ \bullet \ W_{kk} > 0 \qquad (\text{identifiability}) \end{array}$

Efficient Bayesian Inference

MCMC Sampling Using the Tree

Variance matrix: LKJ transformation

(Lewandowski et al., 2009)

 $\mathcal{B}_1(\mathbb{R})$

$$\mathbf{C} = \mathbf{W}^{T} \mathbf{W} = \begin{pmatrix} 1 & W_{12} & \cdots & W_{1p} \\ & W_{22} & & \vdots \\ & & \ddots & \vdots \\ 0 & & & W_{pp} \end{pmatrix}^{T} \begin{pmatrix} 1 & W_{12} & \cdots & W_{1p} \\ & W_{22} & & \vdots \\ & & \ddots & \vdots \\ 0 & & & & W_{pp} \end{pmatrix}$$

 \hookrightarrow Each column k is in the half euclidian unit sphere $\mathcal{S}_{k}^{h}(\mathbb{R})$: • $W_{1k}^2 + \cdots + W_{kk}^2 = 1$ (correlation) • $W_{kk} > 0$ (identifiability)

Diffeomorphism to the euclidian (open) ball $\mathcal{B}_{k-1}(\mathbb{R})$: \hookrightarrow

$$\mathsf{F}: \begin{cases} \mathcal{B}_{k-1}(\mathbb{R}) & \to \mathcal{S}_{k}^{\mathsf{h}}(\mathbb{R}) \\ \mathsf{V}_{\cdot k} & \mapsto \mathsf{W}_{\cdot k} = (\mathsf{V}_{\cdot k}, \sqrt{1 - \|\mathsf{V}_{\cdot k}\|^{2}}) \end{cases} \xrightarrow{\overset{S^{2}(\mathbb{R})}{\underset{\mathcal{B}_{\cdot}(\mathbb{R})}{\overset{\mathsf{V}_{2}}{\overset{\mathsf{V}_{2}}{\overset{\mathsf{N}}{\overset{\mathsf{N}_{2}}}{\overset{\mathsf{N}_{2}}}{\overset{\mathsf{N}_{2}}}{\overset{\mathsf{N}_{2}}}{\overset{\mathsf{N}_{2}}}{\overset{\mathsf{N}_{2}}}{\overset{\mathsf{N}_{2}}}{\overset{\mathsf{N}_{2}}{\overset{\mathsf{N}_{2}}{\overset{\mathsf{N}_{2}}{\overset{\mathsf{N}_{2}}}{\overset{\mathsf{N}_{2}}{\overset{\mathsf{N}_{2}}}{\overset{\mathsf{N}_{2}}}{\overset{\mathsf{N}_{2}}}{\overset{\mathsf{N}_{2}}}{\overset{\mathsf{N}_{2}}}}}}}}}}}}}}}}}}}}}}}}$$

MCMC Sampling Using the Tree

Precision matrix: LKJ transformation

(Lewandowski et al., 2009)

 \hookrightarrow Sampling in $\mathcal{B}_{k-1}(\mathbb{R})$?

MCMC Sampling Using the Tree

Precision matrix: LKJ transformation

(Lewandowski et al., 2009)

 \hookrightarrow Sampling in $\mathcal{B}_{k-1}(\mathbb{R})$? $o \mathcal{B}_{k-1}^{\infty}(\mathbb{R})$ is easier.

MCMC Sampling Using the Tree

Precision matrix: LKJ transformation

(Lewandowski et al., 2009)

 \hookrightarrow Sampling in $\mathcal{B}_{k-1}(\mathbb{R})$? $o \mathcal{B}_{k-1}^{\infty}(\mathbb{R})$ is easier.

$$\hookrightarrow \text{``Fisher Z'' transform tanh}^{-1}: \begin{cases}]-1\,,1[\to \mathbb{R} \\ x \mapsto \frac{1}{2}\ln\left(\frac{1+x}{1-x}\right) \end{cases}$$

MCMC Sampling Using the Tree

Precision matrix: LKJ transformation

(Lewandowski et al., 2009)

 \hookrightarrow Sampling in $\mathcal{B}_{k-1}(\mathbb{R})$? $o \mathcal{B}_{k-1}^{\infty}(\mathbb{R})$ is easier.

$$\hookrightarrow \text{``Fisher Z'' transform tanh}^{-1}: \begin{cases}]-1\,,1[\to \mathbb{R} \\ x \mapsto \frac{1}{2} \ln\left(\frac{1+x}{1-x}\right) \end{cases}$$

 \hookrightarrow Transformation $\mathcal{B}_{k-1}^{\infty}(\mathbb{R}) o \mathcal{B}_{k-1}(\mathbb{R})$?

$$\mathsf{LKJ}_i(\mathbf{z}) = \begin{cases} z_i & \text{if } i = 1\\ z_i \prod_{k=1}^{i-1} (1 - z_k^2)^{1/2} & \text{if } 1 < i \le k - 1. \end{cases}$$

Precision matrix: LKJ transformation

(Lewandowski et al., 2009)

MCMC Sampling Using the Tree

Precision matrix: LKJ transformation

(Lewandowski et al., 2009)

$$\mathbf{x}_k \in \mathbb{R}^{k-1}$$

$$\begin{pmatrix} \cdot & x_{12} & \cdots & x_{1p} \\ & \cdot & \cdot & \cdot \\ & & \cdot & \cdot \\ & & & \cdot & \\ & & & \cdot & \\ \mathbf{0} & & & \cdot \end{pmatrix}$$

Precision matrix: LKJ transformation

(Lewandowski et al., 2009)

MCMC Sampling Using the Tree

Precision matrix: LKJ transformation

(Lewandowski et al., 2009)

MCMC Sampling Using the Tree

Precision matrix: LKJ transformation

(Lewandowski et al., 2009)

MCMC Sampling Using the Tree

Precision matrix: LKJ transformation

(Lewandowski et al., 2009)

(Lewandowski et al., 2009)

Result: Smooth transformation from $\mathbb{R}^{p(p-1)/2}$ to the space of correlation matrices.

Jacobian: Can be computed.

(Lewandowski et al., 2009)

Result: Smooth transformation from $\mathbb{R}^{p(p-1)/2}$ to the space of correlation matrices.

Jacobian: Can be computed.

Associated distribution:

 $\mathsf{LKJ}(\mathbf{C} \mid \eta) = c_p(\eta) \left| \mathbf{C} \right|^{\eta-1}$

(Lewandowski et al., 2009)

Result: Smooth transformation from $\mathbb{R}^{p(p-1)/2}$ to the space of correlation matrices.

Jacobian: Can be computed.

Associated distribution:

$$\mathsf{LKJ}(\mathsf{C} \mid \eta) = c_{\mathsf{p}}(\eta) \left| \mathsf{C} \right|^{\eta-1}$$

 $\eta = 1$: Uniform.

- $\eta > 1$: Peak around identity matrix.
- $0 < \eta < 1$: Trough around identity matrix.

(Lewandowski et al., 2009)

Result: Smooth transformation from $\mathbb{R}^{p(p-1)/2}$ to the space of correlation matrices.

Jacobian: Can be computed.

Associated distribution:

$$\mathsf{LKJ}(\mathbf{C} \mid \eta) = c_{p}(\eta) \left| \mathbf{C} \right|^{\eta-1}$$

 $\begin{array}{ll} \eta = 1 & \mbox{Uniform.} \\ \eta > 1 & \mbox{Peak around identity matrix.} \\ 0 < \eta < 1 & \mbox{Trough around identity matrix.} \end{array}$

 \hookrightarrow Same as taking a "spherical beta" on each of the $\mathbf{V}_{.k}$: SBeta $(\mathbf{V}_{.k}|\beta) \propto (1 - \|\mathbf{V}_{.k}\|^2)^{\beta_k}$ with $\beta_k = n + (p - k)/2$

MCMC Sampling Using the Tree

Attenuation matrix

Assumptions: $\mathbf{A} = \mathbf{P} \mathbf{\Lambda} \mathbf{P}^{-1}$

 $\lambda_k \in \mathbb{R}$ $\lambda_k > 0$

MCMC Sampling Using the Tree

Attenuation matrix

Assumptions: $\mathbf{A} = \mathbf{P} \mathbf{\Lambda} \mathbf{P}^{-1}$

 $\lambda_k \in \mathbb{R}$ $\lambda_k > 0$ $\lambda_1 < \lambda_2 < \cdots < \lambda_p$

Identifiability: $\mathbf{P}_{k} \in \mathcal{S}_{p}^{h}(\mathbb{R})$

 $\|\mathbf{P}_{k}\| = 1$ $\mathbf{P}_{pk} > 0$

MCMC Sampling Using the Tree

Attenuation matrix

Assumptions: $\mathbf{A} = \mathbf{P} \mathbf{\Lambda} \mathbf{P}^{-1}$

$$\lambda_k \in \mathbb{R} \qquad \lambda_k > 0 \qquad \lambda_1 < \lambda_2 < \cdots < \lambda_p$$

Identifiability: $\mathbf{P}_{k} \in \mathcal{S}_{p}^{h}(\mathbb{R})$

$$\|\mathbf{P}_{\cdot k}\| = 1 \qquad \mathbf{P}_{pk} > 0$$

 \hookrightarrow : Decomposition is unique.

MCMC Sampling Using the Tree

Attenuation matrix

Assumptions: $\mathbf{A} = \mathbf{P} \mathbf{\Lambda} \mathbf{P}^{-1}$

$$\lambda_k \in \mathbb{R} \qquad \lambda_k > 0 \qquad \lambda_1 < \lambda_2 < \cdots < \lambda_p$$

Identifiability: $\mathbf{P}_{k} \in \mathcal{S}_{p}^{h}(\mathbb{R})$

$$\|\mathbf{P}_{k}\| = 1$$
 $\mathbf{P}_{pk} > 0$

 \hookrightarrow : Decomposition is unique.

Sampling: **P**._k: Same as **W**._k

MCMC Sampling Using the Tree

Attenuation matrix

Assumptions: $\mathbf{A} = \mathbf{P} \mathbf{\Lambda} \mathbf{P}^{-1}$

$$\lambda_k \in \mathbb{R} \qquad \lambda_k > 0 \qquad \lambda_1 < \lambda_2 < \cdots < \lambda_p$$

Identifiability: $\mathbf{P}_{k} \in \mathcal{S}_{p}^{h}(\mathbb{R})$

$$\|\mathbf{P}_{k}\| = 1$$
 $\mathbf{P}_{pk} > 0$

 $\hookrightarrow:$ Decomposition is unique.

Sampling: $\mathbf{P}_{.k}$: Same as $\mathbf{W}_{.k}$ $\mathbf{\Lambda}$: Use $\log(\lambda_i) - \log(\lambda_{i-1})$

MCMC Sampling Using the Tree

Summary

We can sample from the posterior $p(\mathsf{P}, \mathsf{A}, \mathsf{C}, \sigma, \mu | \mathsf{Y})$

Summary

We can sample from the posterior $p(\mathbf{P}, \mathbf{\Lambda}, \mathbf{C}, \sigma, \mu | \mathbf{Y})$

Transformations:

- C: LKJ transformation
- P: Unitary eigen-vectors
- **A**, σ : Positive (ordered) vectors

Summary

We can sample from the posterior $p(\mathbf{P}, \mathbf{\Lambda}, \mathbf{C}, \sigma, \mu | \mathbf{Y})$

Transformations:

- C: LKJ transformation
- P: Unitary eigen-vectors
- **A**, σ : Positive (ordered) vectors

Priors:

- C: LKJ distribution
- P: Spherical beta
- Λ , σ : half-normal

Summary

We can sample from the posterior $p(\mathbf{P}, \mathbf{\Lambda}, \mathbf{C}, \sigma, \mu | \mathbf{Y})$

Transformations:

- C: LKJ transformation
- P: Unitary eigen-vectors
- **A**, σ : Positive (ordered) vectors

Priors:

- C: LKJ distribution
- P: Spherical beta
- Λ , σ : half-normal

 \hookrightarrow We have a running random walk MCMC.
Summary

We can sample from the posterior $p(\mathbf{P}, \mathbf{\Lambda}, \mathbf{C}, \sigma, \mu | \mathbf{Y})$

Transformations:

- C: LKJ transformation
- P: Unitary eigen-vectors
- **A**, σ : Positive (ordered) vectors

Priors:

- C: LKJ distribution
- P: Spherical beta
- Λ , σ : half-normal

 \hookrightarrow We have a running random walk MCMC.

Question: Can we use the tree ?

MCMC Sampling Using the Tree

General Model

 $\mathsf{BM},\,\mathsf{OU}:$ Instance of a general Gaussian propagation model.

MCMC Sampling Using the Tree

General Model

BM, OU: Instance of a general Gaussian propagation model.

MCMC Sampling Using the Tree

General Model

BM, OU: Instance of a general Gaussian propagation model.

BM: $\mathbf{q}_i = \mathbf{I}_p$, $\mathbf{r}_i = \mathbf{0}_p$, $\mathbf{\Sigma}_i = \ell_i \mathbf{R}$

MCMC Sampling Using the Tree

General Model

BM, OU: Instance of a general Gaussian propagation model.

MCMC Sampling Using the Tree

General Model

BM, OU: Instance of a general Gaussian propagation model.

Drift, shifts, Integrated OU...

MCMC Sampling Using the Tree

Efficient Computations

Likelihood: $p(\mathbf{X}^1|\mathbf{Y})$ in one post-order traversal of the tree.

MCMC Sampling Using the Tree

Efficient Computations

Likelihood: $p(X^1|Y)$ in one post-order traversal of the tree. \hookrightarrow "Pruning", "Gaussian elimination", "Phylogenetic Kalman filter", ...

MCMC Sampling Using the Tree

Efficient Computations

Likelihood: $p(\mathbf{X}^1|\mathbf{Y})$ in one post-order traversal of the tree. \hookrightarrow "Pruning", "Gaussian elimination", "Phylogenetic Kalman filter", ...

Difficulty: Numerical robustness.

Efficient Computations: Gradient

Branch-specific Gradient: $\frac{\partial}{\partial \phi_j} \left[\log p(\mathbf{Y}) \right] = \mathbb{E} \left[\mathbf{F}(\mathbf{X}^j; \phi_j) \mid \mathbf{Y} \right]$

Efficient Computations: Gradient

Branch-specific Gradient: $\frac{\partial}{\partial \phi_j} [\log p(\mathbf{Y})] = \mathbb{E} \left[\mathbf{F}(\mathbf{X}^j; \phi_j) \mid \mathbf{Y} \right]$ \hookrightarrow One pre-order traversal.

Efficient Computations: Gradient

Branch-specific Gradient: $\frac{\partial}{\partial \phi_j} \left[\log p(\mathbf{Y}) \right] = \mathbb{E} \left[\mathbf{F}(\mathbf{X}^j; \phi_j) \mid \mathbf{Y} \right]$

 \hookrightarrow One pre-order traversal.

Chain rule: Get the gradient w.r.t. any parameter.

Efficient Computations: Gradient

Branch-specific Gradient: $\frac{\partial}{\partial \phi_j} [\log p(\mathbf{Y})] = \mathbb{E} \left[\mathbf{F}(\mathbf{X}^j; \phi_j) \mid \mathbf{Y} \right]$ \hookrightarrow One pre-order traversal.

Chain rule: Get the gradient w.r.t. any parameter. $\rightarrow \square$

Implementation and Dataset Heritability Results

Implementation

(Suchard et al., 2018)

- MCMC for tree estimation
- Comprehensive set of tools:
 - Factor model
 - Marginal Likelihood

• ...

- Developed in Java since 2002.
- This is BEAST 1.10.

Don't ask about BEAST 2.

What's new:

- Flexible OU models
- Efficient sampling of variance
- Efficient HMC (in progress)

Implementation and Dataset Heritability Results

HIV virulence heritability

(Alizon et al., 2010; Vrancken et al., 2015)

CD4: CD4+ T cells decline rate VL: Set point viral load

Questions: Is virulence "heritable"? What model of trait evolution?

Implementation and Dataset Heritability Results

Heritability

Implementation and Dataset Heritability Results

Heritability

Implementation and Dataset Heritability Results

Heritability

Viral Trait Evolution

Implementation and Dataset Heritability Results

Models

(Alizon et al., 2010)

We use three different models:

BM no selection on the traits. OU-BM selection on VL, not on CD4. OU selection on both traits.

- Each model is fitted using a MCMC.
- Estimated Marginal likelihood is used to compare them.

 Models of Trait Evolution
 Implementation and Dataset

 Efficient Bayesian Inference
 Heritability

 HIV Virulence Heritability Study
 Results

Results

Heritability (using OU-BM): VL $h^2 = 17\%$ [0.007, 82.5]% (95% CI) CD4 $h^2 = 0.02\%$ [0.0024, 0.16]%

"Consistent" with previous estimates.

Conclusion and Perspectives

A general framework for trait evolution with dated tips.

Main Features:

- Flexible models
- Flexible implementation
- Efficient algorithms
- Applicable to virology

Perspectives:

- Develop HMC
- Apply to larger datasets
- Other questions: geographical spread, comparative studies, ...

Alizon, von Wyl, Stadler, et al. 2010. *PLoS Pathog.* 6.
Aristide, Bastide, dos Reis, et al. 2018. *Evolution*. 72:2697–2711.
Betancourt. 2017. *arXiv e-print*.
Dellicour, Rose, Faria, et al. 2017. *Mol. Biol. Evol*. 34:2563–2571.
Fraser, Lythgoe, Leventhal, et al. 2014. *Science (80-.)*. 343:1243727–1243727.
Hansen. 1997. *Evolution*. 51:1341.
Lemey, Rambaut, Bedford, et al. 2014. *PLoS Pathog*. 10:e1003932.
Lewandowski, Kurowicka, Joe. 2009. *J. Multivar. Anal.* 100:1989–2001.
Suchard, Lemey, Baele, et al. 2018. *Virus Evol*. 4:1–5.
Vrancken, Lemey, Rambaut, et al. 2015. *Methods Ecol. Evol*. 6:67–82.

Photo Credits:

- By Juhanson — Image taken by Juhanson with Canon EOS 10D camera, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=202383

Thank you for listening

Kasteel van Arenberg

Appendices

MCMC Sampling Using the Tree

Hamiltonian Monte Carlo

(Betancourt, 2017)

Idea: Introduce the "momentum" ${\boldsymbol{p}}$ of the parameters ${\boldsymbol{q}}.$

MCMC Sampling Using the Tree

Hamiltonian Monte Carlo

(Betancourt, 2017)

Idea: Introduce the "momentum" ${\boldsymbol{p}}$ of the parameters ${\boldsymbol{q}}.$

Hamiltonian $H(\mathbf{q}, \mathbf{p}) =$ Potential energy + Kinetic energy

MCMC Sampling Using the Tree

Hamiltonian Monte Carlo

(Betancourt, 2017)

Idea: Introduce the "momentum" \boldsymbol{p} of the parameters $\boldsymbol{q}.$

Hamiltonian $H(\mathbf{q}, \mathbf{p}) =$ Potential energy + Kinetic energy = $U(\mathbf{q}) + K(\mathbf{p})$ = $-\log \underbrace{p(\mathbf{Y}|\mathbf{q})p(\mathbf{q})}_{\text{posterior}} - \log \underbrace{\phi(\mathbf{p})}_{\text{Gaussian}}$

MCMC Sampling Using the Tree

Hamiltonian Monte Carlo

(Betancourt, 2017)

Idea: Introduce the "momentum" ${\boldsymbol{p}}$ of the parameters ${\boldsymbol{q}}.$

Hamiltonian $H(\mathbf{q}, \mathbf{p}) =$ Potential energy + Kinetic energy = $U(\mathbf{q}) + K(\mathbf{p})$ = $-\log \underbrace{p(\mathbf{Y}|\mathbf{q})p(\mathbf{q})}_{\text{posterior}} - \log \underbrace{\phi(\mathbf{p})}_{\text{Gaussian}}$

H total energy invariant by Hamiltonian dynamic:

$$\begin{cases} \frac{d\mathbf{p}}{dt} = \nabla_{\mathbf{q}} U(\mathbf{q}) \\ \frac{d\mathbf{q}}{dt} = -\nabla_{\mathbf{p}} K(\mathbf{p}) \end{cases}$$

MCMC Sampling Using the Tree

Hamiltonian Monte Carlo

(Betancourt, 2017)

Idea: Introduce the "momentum" ${\boldsymbol{p}}$ of the parameters ${\boldsymbol{q}}.$

Hamiltonian $H(\mathbf{q}, \mathbf{p}) = \text{Potential energy} + \text{Kinetic energy}$ $= U(\mathbf{q}) + K(\mathbf{p})$ $= -\log \underbrace{p(\mathbf{Y}|\mathbf{q})p(\mathbf{q})}_{\text{posterior}} - \log \underbrace{\phi(\mathbf{p})}_{\text{Gaussian}}$ H total energy invariant by Hamiltonian dynamic: $\begin{cases} \frac{d\mathbf{p}}{dt} = \nabla_{\mathbf{q}}U(\mathbf{q}) \\ \frac{d\mathbf{q}}{t_{t}} = -\nabla_{\mathbf{p}}K(\mathbf{p}) \end{cases}$

1 Draw random moments **p**.

2 Propose a new **q** from the dynamic.