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Introduction
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Turtles phylogenetic tree with habitats.
(Jaffe et al., 2011).

e How can we explain the diversity, while accounting for the
phylogenetic correlations ?

e Modelling: a shifted stochastic process on the phylogeny.
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Stochastic Process on a Tree (Felsenstein, 1985)
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Ornstein-Uhlenbeck Modeling (Hansen, 1997)

phenotype

. e dW(t) = o[ — W(t)]dt + odB(t)
72‘00 71‘50 71‘00 7‘50 (‘)

time
Deterministic part :
e (3 : primary optimum (mechanistically defined).
e In(2)/a : phylogenetic half live.
Stochastic part :
o W(t) : trait value (actual optimum).

e odB(t) : Brownian fluctuations.
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Stochastic Processes on Trees
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BM vs OU

Statistical Inference
Turtles Data Set

Principle of the Modeling
Shifts

Equation Stationary State Variance
o] w()
. dW(t) = odB(t) None. oj = o’t;
N dW(t) = odB(t) =7 oy = yPe ety
o 2
B +a[B — W(t)]dt A= ‘2La x (2% — 1)
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e Number of shifts K fixed, several equivalent solutions.
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e Problem of over-parametrization: parsimonious configurations.
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Equivalencies

e Number of shifts K fixed, several equivalent solutions.
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e Problem of over-parametrization: parsimonious configurations.
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Identifiability Problems
Number of Parsimonious Solutions
Number of Models with K Shifts

Parsimonious Solution : Definition

Definition (Parsimonious Allocation)

A coloring of the tips being given, a parsimonious allocation of the
shifts is such that it has a minimum number of shifts.

CA, PB, MM, SR Change-point Detection on a Tree 9/17



Stochastic Processes on Trees
Identifiability Problems and Counting Issues
Statistical Inference

Turtles Data Set

Identifiability Problems
Number of Parsimonious Solutions
Number of Models with K Shifts

Parsimonious Solution : Definition

Definition (Parsimonious Allocation)

A coloring of the tips being given, a parsimonious allocation of the
shifts is such that it has a minimum number of shifts.

CA, PB, MM, SR Change-point Detection on a Tree 9/17



Stochastic Processes on Trees
Identifiability Problems and Counting Issues
Statistical Inference

Turtles Data Set

Identifiability Problems
Number of Parsimonious Solutions
Number of Models with K Shifts

Parsimonious Solution : Definition

Definition (Parsimonious Allocation)

A coloring of the tips being given, a parsimonious allocation of the
shifts is such that it has a minimum number of shifts.

B

O o

CA, PB, MM, SR Change-point Detection on a Tree

9/17



Stochastic Processes on Trees . .
o . Identifiability Problems
Identifiability Problems and Counting Issues Number of Parsimonious Solutions

Statistical Inference 5 ;
T B G Number of Models with K Shifts

Parsimonious Solution : Definition

Definition (Parsimonious Allocation)

A coloring of the tips being given, a parsimonious allocation of the
shifts is such that it has a minimum number of shifts.

FO-- —0—

IN

O o O

CA, PB, MM, SR Change-point Detection on a Tree

9/17



Stochastic Processes on Trees
Identifiability Problems and Counting Issues
Statistical Inference

Turtles Data Set

Identifiability Problems
Number of Parsimonious Solutions
Number of Models with K Shifts

Parsimonious Solution : Definition

Definition (Parsimonious Allocation)

A coloring of the tips being given, a parsimonious allocation of the
shifts is such that it has a minimum number of shifts.

CA, PB, MM, SR Change-point Detection on a Tree 9/17



Stochastic Processes on Trees
Identifiability Problems and Counting Issues
Statistical Inference

Turtles Data Set

Identifiability Problems
Number of Parsimonious Solutions
Number of Models with K Shifts

Parsimonious Solution : Definition

Definition (Parsimonious Allocation)

A coloring of the tips being given, a parsimonious allocation of the
shifts is such that it has a minimum number of shifts.

r.—

O o

CA, PB, MM, SR Change-point Detection on a Tree

9/17



Stochastic Processes on Trees . .
o . Identifiability Problems
Identifiability Problems and Counting Issues Number of Parsimonious Solutions

Statistical Inference 5 ;
T B G Number of Models with K Shifts

Parsimonious Solution : Definition

Definition (Parsimonious Allocation)

A coloring of the tips being given, a parsimonious allocation of the
shifts is such that it has a minimum number of shifts.

] ]

O o O

CA, PB, MM, SR Change-point Detection on a Tree

9/17



Stochastic Processes on Trees
Identifiability Problems and Counting Issues
Statistical Inference

Turtles Data Set
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Equivalent Parsimonious Allocations

Definition (Equivalency)

Two allocations are said to be equivalent (noted ~) if they are
both parsimonious and give the same colors at the tips.

Find one solution Several existing Dynamic Programming
algorithms (Fitch, Sankoff, see Felsenstein, 2004).

Enumerate all solutions New recursive algorithm, adapted from
previous ones (and implemented in R).
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Equivalent Parsimonious Solutions for an OU Model.

Equivalent allocations and values of the shifts - OU.
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Collection of Models

New Problem Number of Equivalence Classes: ‘Sﬁ" ?

Pl m+n—1\ __ (# of edges
o [SE < (M) = (# of chifte)
e A recursive algorithm to compute |S,’;" (implemented in R).
— Generally dependent on the topology of the tree.

e Binary tree: }Sﬁ" = (2”*}3**() _ (# of esciﬁgisf;ﬁffsf shifts)
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EM Algorithm: number of shifts K fixed

Ly Zy— "N
2 él—f BM Zy|Zy~ N (20,024,
FA R vj 3| Zo~ N'( 2 + 6, 0247

Z3 Ys

pg(Z, Y):pe(Z]_) H PB(Zj|Zparent(j)) H pe(\/"|ZPB"ent("))

1<j<m 1<i<n

EM Recursive algorithm to find fx = argmax, ¢ e pén(Y):

E step Given 0", compute pgr(Z | Y)
(G)M step @M1 raises Egn[log pp(Z,Y) | Y]
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Model Selection on K

|l ——

- “'mn'”“ i o

Simulated OU (o =3, % =0.1)
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EM Algorithm
Model Selection
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Penalized LL

Idea K

= argmax
0<K<Kmax
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Penalized LL

Idea

K = argmaX

0< K< Kumax

50 -

_50 -

-100-

20

{|og péK(Y) - Pen(K)}

criteria Penalties:
LL
AIC AIC K +3



Penalized LL

argmax {Iog P, (V) — pen(K)}

Idea K =
0<K<Kmax
50- ......o:
oo"::uo"'...
or  ppRiIilleec.e
.
H
-50 - so
-100 -
T T T
5 10 20
K

criteria Penalties:

LL
AIC AICK+3
BIC L
BIC 3(K + 3) log(n)



K = argmax

{108 pa, (¥) = pen(K) }

Penalized LL

Penalties:

AIC K+3

BIC (K + 3)log(n)
LINselect pen(n, K, |Sﬁl|)

Based on Baraud et al. (2009)
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Turtles Dataset

® Freshwater
® Island
® Mainland
® Saltwater
Habitat EM
No. of shifts 16 5
No. of regimes 4 6
® InL  -133.86 -97.59
In2/a (%) 7.44 5.43
02/2a 033 0.22
CPU t (min)  65.25 134.49
L1
T T T T 1
200 150 100 50 0

(Jaffe et al., 2011)
Colors: habitats.
Boxes: selected EM regimes.
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Turtles Dataset

Freshwater
Island
Mainland
Saltwater

Chelonia mydas

200 150 100 50 0

Colors: habitats.
Boxes: selected EM regimes.
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Turtles Dataset

Freshwater
Island
Mainland
Saltwater

Geochelone nigra abingdoni

200 150 100 50 0

Colors: habitats.
Boxes: selected EM regimes.
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Turtles Dataset

Freshwater
Island
Mainland
Saltwater

Chitra indica

200 150 100 50 0

Colors: habitats.
Boxes: selected EM regimes.
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Conclusion and Perspectives

A general inference framework for trait evolution models.

Conclusions e Identifiability can be assessed.

e An EM can be written to maximize likelihood.

e Model selection for a non-iid framework.

R codes Available on GitHub:
https://github.com/pbastide/PhylogeneticEM

Perspectives e Multivariate traits.
e Deal with uncertainty (tree, data).
¢ Phylogenetic networks.

CA, PB, MM, SR Change-point Detection on a Tree
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@ Inference
o EM
o Model Selection

@ ldentifiability Issues
e Cardinal of Equivalence Classes
e Number of Tree Compatible Clustering

@ Simulations Results

® Multivariate

e Models
e Inference
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E step

Ly

EM

Model Selection

Z—— "N
Ly

21 EY
Y-
2> I ) 3
I
Z3 Ys

Compute the following quantities:

EP[Z | Y], Var'” [Z; ]| Y], Cov™ [Z}, Zyemssy | Y]

e Using Gaussian properties. Need to invert matrices:

complexity in O(n?).

e Using Gaussian properties and the tree structure:
"Upward-Downward” algorithm. Complexity in O(n).

CA, PB, MM, SR
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Multivariate
M Step
Maximize:
m—+n
Ellogpe(X)| Y] =— Z Cj(a, shifts) + F (1,72,0%, @)
j=2

e 1,72, 02 simple maximization

e Discrete location of K shifts
— Exact and fast for the BM

e o numerical maximization and/or on a grid
> Generalized EM
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Model Selection

Initialization
Shifts : Lasso regression.
A = argmin {H Y — TW(a)AH;q + A ||A71||1}
A YY

e Initialize Xyy(a), then estimate A with a Gauss Lasso
procedure, using a Cholesky decomposition.

e )\ chosen to get K shifts.

The selection strength « : Initialization using couples of tips.
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Cholesky Decomposition

The problem is:

~

. 2
A = argmin {||y ~RAJZ,+ ) \A_1|1}

Cholesky decomposition of Xyy:
Yyy = LLT , L a lower triangular matrix

Then:
1Y —RA|Z =LY — L7'RAf

And if Y/ = L71Y and R’ = L7!R, the problem becomes:

~

B . ' A2
A—argAmm{HY R+ 2184, |
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Let /) be the set of selected variables (including the root). Then:

AGauss = nﬁA(Y,) with ,:_)\ = Span{R_,, J S '{h)\}



References
Inference
Identifiability Issues
Simulations Results
Multivariate

EM

Model Selection

Goal and Notations

Data A process on a tree with the following structure:

Vi> 1, X Xeag) ~ N (mi(Xoa() = 6 Xpa() + 17> 07)

ot
g =1 qa =e 4
; _at: —a(l—vy)E;
o) = S r = b} ou.d =00 =T ) S = ok (1 e )
: - : P’
2 2 2 .
oj =Yljo o2 — 1(173—2042])
J 2

Goal Compute the following quantities, at every node j:
Va7 | Y],Cov" [Z, Zoagy | Y], EP[Z; | V]
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Upward

Goal Compute for a vector of tips, given their common ancestor:
ijlxj (YJ§ a) = Aj(YJ)q)Mj(Yj),SJZ(Yj)(a)

Initialization For tips: fy.|y, (Yi;a) = @y, o(a)
Propagation

fYJ|xj (Y;a) = H Yir|x, 7 a

X
Freipx, (Yi12) = / i, (V5B 1 (b 2)
Root Node and Likelihood At the root:

fxiy (@ Y) o fyx, (Y; a)fx, (a) Xiy X X

Var[ X1 | Y] = (i + 1 >_1 \Z \Z YL
7 SH(Y)
© MI(Y)>
E[Xi|Y Var[X1 | Y
D 1Y) =varb Y] (5 + 5,
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Compute £ =E [X; | Y] , VZ=Var[X; | Y], G ;= Cov[Xj Xpa() | Y]
Initialization Last step of Upward.
Propagation X
P g1y (3 BY) = P iy (30 5, v (B, Y)

fXj|xan),Y (b;a,Y) = ij|xpa(j),vj (b;a, YY)

i fXj|Xpau) (b: a)fYJ|xj (Y/; b) A f} fﬁ

Y/1 Y/ YL



Upward

L q? -1
SH(Y) = (Z - )
! =1 JI(YJI) +a}
. . M; (YJ/) —r
M;(Y)) = S?(Y’)qu G
’ /=1 ’ sj/ (YJI) + 9
Downward
Sz(YJ) )
hpa(l) =49 52(YJ) to 2 pa(j)
' S7(Y) (9 Epagy) + 1) + o7 Mi(Y/)
= 52(YJ) + a
2 20yi
o S0 <g? TV )
J

rnvy 2 Pj caryi 2 Vpa())
SH(YI) + o3 SH(YI) o7 P

 CAPBMM,SR  ChangepointDetectiononaTree 1242
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Algorithm:
® Find the K branches ji, ..., Jk with largest C7;

@ Allocate one change point in the first K branches;

© For each of these branches, set 6}:7“) so that le(r, 5)=0
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M Step: Segmentation

EM

Model Selection

C.J'(O‘7Tﬂ 5) = Uji2 <]E[)<J | Y] - gE [ pa(j) | Y - SJZH{Tk =b; }Jk)

BM : , each cost is independent.

a) =0} (E[x,- Y] = QG [Xoy | V] ) /A
le(oé,T., (5) = O'J,_2 (E[)(J | Y] — qu [Xpa(j) ‘ Y} — SjZH{Tk = bj}5k> /&)\

k

Algorithm:
©® Find the K branches ji, ..., jk with largest C?;
® Allocate one change point in the first K branches;
© For each of these branches, set 5}:7“) so that le(T, 0)=0

CA, PB, MM, SR Change-point Detection on a Tree 13/42
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M Step: Segmentation

Model Selection

Ci(a,7,0) = <]E[X | Y] = qE [Xeagy | Y] —s,ZH{Tk = b}ok)

ou : , a cost depends on all its parents.

® Exact minimization: too costly.
® Need of an heuristic.

® |dea: rewrite as a least square:
|D — AUA|

with D a vector of size n+ m, A a diagonal matrix of size n+ m, A the
vector of shifts and U the incidence matrix of the tree.

® Then use Stepwise selection or LASSO.

CA, PB, MM, SR Change-point Detection on a Tree 14/42
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Model Selection on K: LINselect

EM
Model Selection

Goal
- : ik pen(K)
K = argmin HY—YH <1+
OSESP—l K 14 n—K-1
Oracle

. %]2
R

Definition (Baraud et al. (2009))
Let D, N > 0, and Xp ~ x*(D), Xn ~ x*(N), Xp L Xn.

: 1 Xn
thl[D,N,X]—mE |:<XD—Xw>+:|, VX>O

Dkhi[D, N, EDkhi[D, N, q]] = q, Y0 < q<1

CA, PB, MM, SR Change-point Detection on a Tree 15/42
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Proposition: LINselect Penalty

Proposition (Form of the Penalty and guarantees (« known))

Under our setting: Y = TW/(a)A + vE with E ~ N(0, V), define the penalty:

EM
Model Selection

K

pen(K) = A::iK:; EDkhi {K +2,n— K —2,exp (— log (s,’?" —2log(K + 2))]

If k <1, and p < min ( — 7), we get:

Kn @
2-+log(2)+log(n) ’

2

)
Y| < CAr) inf, {wf +(Ky+2)(3+ log(n))}

§ HE[Y] s

with C(A, k) a constant depending on A and x only.
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LINselect Model Selection: Important Points

EM
Model Selection

Based on Baraud, Giraud, and Huet (2009)
e Non-asymptotic bound.

Unknown variance.

No constant to be calibrated.

Novelties e Non iid variance.
Penalty depends on the tree topology
(through ‘Sﬁ”).

CA, PB, MM, SR Change-point Detection on a Tree 17/42
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Model Selection with Unknown Variance

Theorem (Baraud et al. (2009))

Under the following setting:
Y =E[Y']|+~E with E'~N(0,I) and S ={S;,ne M}

EM
Model Selection

If Dy = Dim(S;’), Ny =n — Dy > 7, max(Ly, Dyp) < kn, with k < 1, and:

Q= (Dy+1)e™tn < +o0

nemM
2 (1 n pen(n))
N

Iff % = argmin HY’ - \A/,’,
nem

N,
with:  pen(n) = pens £ () = A U T EDKhi[Dy +1, Ny — 1, et A>1
—

2

Then: E

HE[Y/]; v B

E[Y]- Y|
2t e o+

CA, PB, MM, SR Change-point Detection on a Tree 18/42
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IID Framework (o = 0)

EM
Model Selection

Assume K, =D, —-1<p—-1<n-8, VYneM

Then:
Q=) (Dy+1)etn= > (Ky+2)e
nem nem
- —1
=5 Lo et = 5 I g R
K=0 K=0
p—1 1
= < log(p) < log(n)
par K+2
And:
-1
Lx < log <n tm )+2|og(K+2) < Klog(n+m—1)4+2(K+1) < p(2+log(2n—2))

Hence, if p < min (m, n— 7), then max(Ly, Dy) < kn for any n € M.
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Non-1ID Framework (« # 0)

EM
Model Selection

Cholesky decomposition: V = LLT Y =L7'Y ¢ =1L"'s E =L"'E

Y =E[Y'] +~E', with: E' ~ N(0, 1)

Sy=L"1S,, Y= Projs,) Y' = argmin||Y — La/Hi =LY,
7 aes)

HIE[Y] A HE Y] - 2
v

m

2 .12 L e
=l =y

Critne(n) = | = %5 (1+ 2222 < |y ¥,

2 pen, (1)
1 A=A
N, v ( *

Ny,

CA, PB, MM, SR Change-point Detection on a Tree 20/42



S (0,0,9)(0,%,)
T 490 g0

Initialization For tips
Propagation

/\",L*argmm1 ,(p) + I{p # k}}
1<p<K

L
Si(k)=>_Si(p) +Hpr # Kk}, V(p1,...pL) € Kfp x ... x Kf ~—
I=1

L

L
Ti(k) = > I 7ie) = H Z i (pr)
el

(p1,---pL)EKEX ... x KL I=1

Termination Sum on the root vector
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Cardinal of Equivalence Classes
Number of Tree Compatible Clustering

Cardinal of Equivalence Classes

Initialization For tips
Propagation

Kk = argmin {Si(p) +I{p # k}}
1<p<K

L

Si(k)=>_Si(p) +{p # k} , Yp1,...pL) € K} x ... x Kf

=1

Ti(k) = >

(p1,--pL)EXEX ... x KL =1

CA, PB, MM, SR

(Siy (k))k L (Si, (K)«
(T (k) (T, ()«

f[ Ti(pr) = ﬁ > Tilp) A A A

=1 PIGKL

Change-point Detection on a Tree
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Cardinal of Equivalence Classes

Cardinal of Equivalence Classes
Number of Tree Compatible Clustering

S (0,,)(0,,%)
e . T (1,0,0) (100)
Initialization For tips Coe' Coe

Propagation
Ky= {o}
. Ki= {o}
Kl = argmin {S; +1I k °
k= argmin {5 (p) + {p # k}} Ki= {0}
L
Sik)=S"5s; I kY, Y(p1,... Kix...x Kk
(k) ; (P Hpr # K} W(pr- o) €KL x o x K St
. . Se)=1+1;T@=1x1
Ti(k) = Z HT//(p/):H Z Ti,(P/) S@=1+1;T@®=1x1
(P1---pL)ERE X ... x Kk =1 I=1 pexc,
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Cardinal of Equivalence Classes

Cardinal of Equivalence Classes
Number of Tree Compatible Clustering

S (0,,2)(0,%,)(e,0,)(2,%,0)(e,%,0)
e . . T (1,00) (1,00 [0,10 (0,01) (001)
Initialization For tips SO0 & &

Propagation
Kk = argmin {Si(p) +I{p # k}}

1spsk S(LL0)
L i

S,(k):ZS,I(P/)—‘rH{p/#k} ) V(PI,PL)GKi XXK}& 5(0,2’2)

=1 T (L1

L L ocoe

Ti(k) = > 7 =1] Y. Tl

(P1---pL)ERE X ... x Kk =1 I=1 pexc,

N~

S,
T
ocee

Termination Sum on the root vector |

2)
3)
o

S (2,2,
T(LL,
oce
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Assumption “No Homoplasy™ 1 shift = 1 new color

Proposition “K shifts <= K + 1 clusters”
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Linking Shifts and Clustering

Cardinal of Equivalence Classes
Number of Tree Compatible Clustering

Assumption “No Homoplasy™: 1 shift = 1 new color

The No Homoplasy hypothesis is not

respected.
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Linking Shifts and Clustering

Cardinal of Equivalence Classes
Number of Tree Compatible Clustering

Assumption “No Homoplasy™: 1 shift = 1 new color

The No Homoplasy hypothesis is not
~ respected.

Proposition “K shifts <= K + 1 clusters”

CA, PB, MM, SR Change-point Detection on a Tree 22/42
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Cardinal of Equivalence Classes
Number of Tree Compatible Clustering

Definitions

® 7T a rooted tree with n tips

° N,(<T) = |Ck| the number of possible partitions of the tips in K clusters

° Ag) the number of possible marked partitions

—

° N§T3) = 3: partitions 1 and 2
are equivalent

° Agn) = 4: one marked color
(“white = ancestral state”)

L —
Hl i
i)

Partitions in two groups for a binary
tree with 3 tips

CA, PB, MM, SR Change-point Detection on a Tree
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General Formula (Binary Case)

Cardinal of Equivalence Classes
Number of Tree Compatible Clustering

If 7 is a binary tree, consider T, and 7; the left and right sub-trees of 7. Then:

Z/v )+ZAA

ki+ko=K k1+k2 K+1
AD = N ATINT + NTOAT + 3T ATOAT
kitko=K ki+ko=K+1

We get:

T n 2n—-2—-K 'n) 2n—1—-K
N}(<+)1:Ni(<ll:< K ) and A( 1—AK+1 ( K

CA, PB, MM, SR Change-point Detection on a Tree 24/42
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Recursion Formula (General Case)

Cardinal of Equivalence Classes
Number of Tree Compatible Clustering

If we are at a node defining a tree 7 that has p daughters, with sub-trees 71,...,7p,
then we get the following recursion formulas:

MO =3 HN p> > [TA7 TN

kit +kp=K lc[[l,p]] ki+--Fkp=K+|l|—-1 i€l i¢l
kiyeoonkp>1 [1]>2 Kyyeonkp>1
(T) _ (77) (79
AD =Y > AT
IC[L,p] kit tkp=K+|I]—1 i€l i¢l
[1>1 Kiyeonkp>1

No general formula. The result depends on the topology of the tree.

CA, PB, MM, SR Change-point Detection on a Tree
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Simulations Design (Uyeda and Harmon, 2014)

e Topology of the tree fixed (unit height, A = 0.1, with 64, 128, 256 taxa).
e Initial optimal value fixed: 5o =0

e One "base” scenario ap = 3, 42 = 0.5, Kp = 5.

® o € log(2)/{0.01, 0.05, 0.1, 0.2, 0.23, 0.3, 0.5, 0.75, 1, 2, 10}.

e 42 ¢c{03,0.6, 3, 6, 12, 18, 30, 60, 150}/(2as).

e Ke{0,1,2,3, 45,8, 11, 16}.

e Shifts values ~ IN(4,1) + IN(—4,1)

e Shifts randomly placed at regular intervals separated by 0.1 unit length.
® n = 200 repetitions : 16200 configurations.

CPU time on cluster MIGALE (Jouy-en-Josas):
® o known: 6 minutes per estimation (66 days in total).

® « unknown: 52 minutes per estimation (570 days in total).

CA, PB, MM, SR Change-point Detection on a Tree 26/42
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One Example

-0.3

Unit

CA, PB, MM, SR

Change-point Detection on a Tree

Unit ~

Unit -
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Adjusted Rand Index
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ntaxa = 64 ntaxa =128 ntaxa = 256

_S00




Known
Estimated

oy -2y

< T
ntaxa =64 ntaxa =128 ntaxa =256

ot
_u
-8
s
v
3
-z
-1
-0

| [ Lo
-z
T
_st0
50 2
e0E
€20
2o
_T0
500
100

g 3 ° o+ & T e & o4 oo



References
Inference
Identifiability Issues
Simulations Results
Multivariate

Parameters: 2

1.0

. 057

T 00+

(Z\E

-0.5+4 # *
-1.04 F
1.0
0.5+
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p9 =exe

82T = exelu

96z = exelu

K
ES3 Known
ES Estimated

o

B8 Known
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Models

Inference

BM Model

Yi1
Data n vectors of p traits at the tips: Y; = :

Y;
SDE dW(t) = £dB;, rate matrix R=XX7 (p x p)

Covariances Cov [Yi; Yjq] = tjjRiq for i, j tips, and /, g characters

Var[vec(Y)] =C,®R

Shifts K shifts d1,---,dK vectors size p
— All the characters shift at the same time

CA, PB, MM, SR Change-point Detection on a Tree 34/42



Linear Model Representation

vec(Y) = vec(ATT) + E with E~ N(0,V =C, ®R)
Incomplete Data Representation

Ys | 2 NN(ZQ +9, £7R)

21 22 e? Y3
EY4
3 Y5
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OU Model: General Case

Yi1
Data n vectors of p traits at the tips: Y; = :
Yip
SDE A (p x p) “selection strength”
dW(t) = —A(W(t) — B(t))dt + £dB;

Covariances
Cov [X;; X;] = e Atire ATt
tii
1 e Alti—ty) </ ’ eszzTeATvdv> o~ AT(5—t;)
0

Shifts K shifts 81, -+ ,dk vectors size p
— On the optimal values

CA, PB, MM, SR Change-point Detection on a Tree 36/42



Assumption A = al, “scalar”

Stationnary State S = %R
Fixed Root For i,j tips and /, g characters:
1 —2ah ( 2atj;
Cov [Yi; Yiql = 55° (e°*%i — 1) Riq

— Can be reduced to a BM on a re-scaled tree



BM Natural generalization of the univariate case.

OU M step intractable in general.

Incomplete Data Model: Can readily handle missing data.
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Models
Inference

Model Selection

e Previous criterion cannot be applied

e Solution: “Slope Heuristic-based method
o Massart (2007)

@ oracle inequality with known variance
@ penalty up to a multiplicative constant

e Baudry et al. (2012)

o Slope-heuristic method to calibrate the constant
o Implemented in capushe (Brault et al., 2012)

CA, PB, MM, SR Change-point Detection on a Tree
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Model Selection: Toy Example

Inference

|

&

g
L

Unit =

Unit -

Figure: Simulated Process.
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Contrast representation Successive slope values

g]
&
S
o i
g i
T g
g
< |
x
3 8
8| &
& ST T T T T T T T T T
' 11 11 10 9 8 8 7 6 5 5 4 3 2
- Number of points (penzhape(m).~Ya(3m)) for the regression
&
£ g °
T
! Selected models with respect to the successive slope values
3
8]
7 =
3
B 2
=
2
$f ° —— The regression line is computed with 6 points
2 L fins s 8 7 6 5 5 4 3 2
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Figure: capushe output for penalized log-likelihood.
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Model Selection: Toy Example

Models
Inference

|

Figure: Reconstructed Process.
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