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Introduction
0

Unit

200 150 100 50 0

Chelonian phylogenetic tree with habitats.
(Jaffe et al., 2011).

Dermochelys Coriacea

Homopus Areolatus

How can we explain the diversity, while accounting for the
phylogenetic correlations ?

Modelling: a shifted stochastic process on the phylogeny.
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Stochastic Process on a Tree (Felsenstein, 1985)
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Brownian Motion:

Var [A | R ] = σ2t

Cov [A; B | R ] = σ2tAB
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BM vs OU (Hansen, 1997; Butler and King, 2004)

Equation Stationary State Variance
Model-Based Comparative Analysis 685

Figure 1: Effect of varying j in a Brownian motion (BM) process. Plotted
are random walks through time for a continuous character with phe-
notypic value along the Y-axis and time along the X-axis. At each small
step in time, the phenotype has an equal and independent probability
of increasing or decreasing in value. Increasing j results in stronger
random drift and a broader distribution of final states. Because Ornstein-
Uhlenbeck (OU) processes contain a drift component, increasing j also
broadens the distribution of final states in OU processes. Each panel
displays 30 realizations of the stochastic process and the distribution of
final states (the Gaussian curves to the right of the random walks). The
process is simulated from to , with each realization havingt p 0 t p 1
the same initial state. An animation of this process is provided in the
online edition of the American Naturalist.

Figure 2: Influence of the selection-strength parameter a and optimum
trait value v on a trait evolving under an Ornstein-Uhlenbeck (OU)
process. Larger values of a imply stronger selection and hence a more
rapid approach to the optimum value v (dotted line) as well as a tighter
distribution of phenotypes around the optimum. Each panel displays 20
realizations of the OU process and the distribution of final trait values.
The process is simulated from to , with each realization havingt p 0 t p 1
the same initial state and value of v. See figure 1 for explanation of axes.

This term is linear in X, so it is as simple as it might
possibly be. It contains two additional parameters: a mea-
sures the strength of selection, and v gives the optimum
trait value. The force of selection is proportional to the
distance, , of the current trait value from the op-v ! X(t)
timum. Thus, if the phenotype has drifted far from the
optimum, the “pull” toward the optimum will be very
strong, whereas if the phenotype is currently at the opti-
mum, selection will have no effect until the stochasticity
moves the phenotype away from the optimum again or
there is a change in the optimum, v, itself. Because of its
dependence on the distance from the optimum, the OU
process can be used to model stabilizing selection. The
effect of varying a can be seen in figure 2.

Because the OU model reduces to BM when , ita p 0
can be viewed as an elaboration of the BM model. As a
statistical model, its primary justification is to be sought
in the fact that it represents a step beyond BM in the
direction of realism while yet remaining mathematically
tractable. As a model of evolution, the OU process is con-

sistent with a variety of evolutionary interpretations, two
of which we mention here.

Lande (1976) showed that under certain assumptions,
evolution of the species’ mean phenotype can take the
form of an OU process. In Lande’s formulation, both nat-
ural selection and random genetic drift are assumed to act
on the phenotypic character; the OU process’s optimum

denotes the location of a local maximum in a fitnessv
landscape. Felsenstein (1988) pointed out that in the event
that this optimum itself moves randomly, the correct de-
scription of the phenotypic evolution is no longer exactly
an OU process, but an OU process remains a good
approximation.

Hansen (1997) raised questions concerning the time-
scale of the approach of a species’ mean phenotype to its
optimal value relative to that of macroevolution. Specifi-
cally, he suggested that the macroevolutionary OU process
he proposed could only operate on far too slow a timescale
to be identical with the Landean OU process (cf. Lande
1980). He proposed a different interpretation based on the
supposition that at any point in its history, a given phe-
notypic character is subject to a large number of conflicting
selective demands (genetic and environmental) so that its
present value is the outcome of a compromise among

dW (t) = σdB(t) None. σij = γ2 + σ2tij

Model-Based Comparative Analysis 685
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dW (t) = σdB(t)

+α[β(t)−W (t)]dt


µ = β0

γ2 =
σ2

2α

σij =
σ2

2α
e−αdij

(Root in Stationary

State)
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OU Shifts in the optimal value:

βj = βpa(j) +
∑

k

I{τk = bj}δk
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Equivalencies

K fixed, several equivalent solutions.

µ

δ1 δ2

µ+δ2µ+δ1

µ

δ2 − δ1

δ1

Problem of over-parametrization: parsimonious configurations.
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Parsimonious Solution : Definition

Definition

A coloring of the tips being given, a parsimonious allocation of the
shifts is such that it has a minimum number of shifts.
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Equivalent Parsimonious Allocations

Definition

Two allocations are said to be equivalent (noted ∼) if they are
both parsimonious and give the same colors at the tips.

Find one solution Several existing Dynamic Programming
algorithms (see Felsenstein, 2004).

Enumerate all solutions New recursive algorithm, adapted from
previous ones (and implemented in R).
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Number of Models with K Shifts

Hypothesis “No Homoplasy”: 1 shift = 1 new color.

“K shifts ⇐⇒ K + 1 colors”

Bijection

SPI
K = SP

K/ ∼; SP
K = {Parsimonious allocations of K shifts}

SPI
K ' {Tree compatible coloring of tips in K + 1 colors}

Problem Size of SPI
K ?

Proposition∣∣SPI
K

∣∣ ≤ (m+n−1
K

)∣∣SPI
K

∣∣ depends on the topology of the tree. It can be
computed with a recursive algorithm.

For a binary tree:
∣∣SPI

K

∣∣ =
(2n−2−K

K

)
.
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Incomplete Data Model : EM

Y5

Y4

Y3

Y2

Y1

Z1

Z4

Z2

Z3

δk

Xj |Xpa(j) ∼ N

(
qjXpa(j) + rj + sj

∑
k

I{τk = bj}δk , σ
2
j

)

EM Algorithm Maximize Eθ[ log pθ(Z ,Y ) | Y ].

E step “Upward-Downward” Algorithm.

M step OU: increase objective function (GM).

Initialization LASSO regression (see next).
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Linear Regression Model

Y5

Y4

Y3

Y2

Y1

Z1

Z4

Z2

Z3

δ3

δ1

δ2

∆ =



µ
δ1

0
0
δ2

0
δ3

0
0


T ∆ =


µ+ δ2

µ
µ+ δ1 + δ3

µ+ δ1

µ+ δ1



T =


Z1 Z2 Z3 Z4 Y1 Y2 Y3 Y4 Y5

Y1 1 0 0 1 1 0 0 0 0
Y2 1 0 0 1 0 1 0 0 0
Y3 1 1 0 0 0 0 1 0 0
Y4 1 1 1 0 0 0 0 1 0
Y5 1 1 1 0 0 0 0 0 1

 BM : Y = T∆ + E

OU : Y = TW (α)∆+E
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Model Selection

Model Selection on K

Proposition (Form of the Penalty and guaranties (α known))

Under our setting:

Y = R∆ + γE with E ∼ N (0,V ) and S = {Sη , η ∈M}, M =
⋃

K≥0

SPI
K

Define the following penalty:

pen(K) = A
n − K − 1

n − K − 2
EDkhi[K + 2, n−K − 2, e−LK ], LK = log

∣∣∣SPI
K

∣∣∣+ 2 log(K + 2)

and the estimator: η̂ = argmin
η∈M

‖Y − ŝη‖2
V

(
1 +

pen(Kη)

n − Kη − 1

)
Under some reasonable technical hypothesis, we get the non-asymptotic bound:

E

[∥∥s − ŝη̂

∥∥2

V

γ2

]
≤ C(A, κ)

[
inf

η∈M

{
‖s − sη‖2

V

γ2
+ Dη(3 + log(n))

}
+ 1 + log(n)

]
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Incomplete Data Model : EM
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Model Selection

Model Selection: Important Points

Based on Baraud et al. (2009)

Non-asymptotic bound.
Unknown variance.
No constant to be calibrated.

Novelties Non iid variance.
Penalty depends on the tree topology
(through

∣∣SPI
K

∣∣).
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Chelonia Dataset

0

Unit

200 150 100 50 0

Freshwater
Island
Mainland
Saltwater

Colors: habitats.
Boxes: selected EM regimes.
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Chelonia Dataset

0

Unit

200 150 100 50 0

Freshwater
Island
Mainland
Saltwater

Colors: habitats.
Boxes: selected EM regimes.

Chelonia mydas
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Chelonia Dataset

0

Unit

200 150 100 50 0

Freshwater
Island
Mainland
Saltwater

Colors: habitats.
Boxes: selected EM regimes.

Geochelone nigra abingdoni
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Chelonia Dataset

0

Unit

200 150 100 50 0

Freshwater
Island
Mainland
Saltwater

Colors: habitats.
Boxes: selected EM regimes.

Chitra indica
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Chelonia Dataset

0

Unit

200 150 100 50 0

Freshwater
Island
Mainland
Saltwater

Colors: habitats.
Boxes: selected EM regimes.

Habitat EM

No. of shifts 16.00 5.00

No. of regimes 4.00 6.00

lnL -135.56 -97.59

ln 2/α (%) 7.83 5.43

γ2 0.35 0.22

CPU time (min) 1.25 134.49
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Conclusion and Perspectives

A general inference framework for trait evolution models.

Conclusions Some problems of identifiability arise.
An EM can be written to maximize likelihood.
Adaptation of model selection results to non-iid
framework.

R codes Available on GitHub:
https://github.com/pbastide/Phylogenetic-EM

Perspectives Multivariate traits.
Deal with uncertainty (tree, data).
Use fossil records.
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Thank you for listening
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