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Introduction
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Chelonian phylogenetic tree with habitats.
(Jaffe et al., 2011).

@ How can we explain the diversity, while accounting for the
phylogenetic correlations ?

@ Modelling: a shifted stochastic process on the phylogeny.
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References
BM vs OU (Hansen, 1997; Butler and King, 2004)
Equation Stationary State Variance

dW(t) = odB(t) None. oj =7+ oty
— 2
dW(t) = 0dB(t) = P5o oy = O e
, o2 2a
+Oé[/8(t)*W(t)]dt T = z (Root in Stationary
State)
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o K fixed, several equivalent solutions.
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Problem of over-parametrization: parsimonious configurations.
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Equivalencies

o K fixed, several equivalent solutions.
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@ Problem of over-parametrization: parsimonious configurations.
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Parsimonious Solution : Definition

Definition

A coloring of the tips being given, a parsimonious allocation of the
shifts is such that it has a minimum number of shifts.

PB, MM, SR Shifted stochastic processes on trees 7/17



Stochastic Processes on Trees

Identifiability Problems and Counting Issues Identifiability Problems
Statistical Inference Number of Parsimonious Solutions
Chelonia Data Set Number of Models with K Shifts
References

Parsimonious Solution : Definition

Definition

A coloring of the tips being given, a parsimonious allocation of the
shifts is such that it has a minimum number of shifts.

PB, MM, SR Shifted stochastic processes on trees 7/17



Stochastic Processes on Trees

Identifiability Problems and Counting Issues Identifiability Problems
Statistical Inference Number of Parsimonious Solutions
Chelonia Data Set Number of Models with K Shifts
References

Parsimonious Solution : Definition

Definition

A coloring of the tips being given, a parsimonious allocation of the
shifts is such that it has a minimum number of shifts.

B!

O @)

PB, MM, SR Shifted stochastic processes on trees 7/17



Stochastic Processes on Trees

Identifiability Problems and Counting Issues Identifiability Problems
Statistical Inference Number of Parsimonious Solutions
Chelonia Data Set Number of Models with K Shifts
References

Parsimonious Solution : Definition

Definition

A coloring of the tips being given, a parsimonious allocation of the
shifts is such that it has a minimum number of shifts.

FO—.- =0

IN

O @) O

PB, MM, SR Shifted stochastic processes on trees 7/17



Stochastic Processes on Trees

Identifiability Problems and Counting Issues Identifiability Problems
Statistical Inference Number of Parsimonious Solutions
Chelonia Data Set Number of Models with K Shifts
References

Parsimonious Solution : Definition

Definition

A coloring of the tips being given, a parsimonious allocation of the
shifts is such that it has a minimum number of shifts.

PB, MM, SR Shifted stochastic processes on trees 7/17



Stochastic Processes on Trees

Identifiability Problems and Counting Issues Identifiability Problems
Statistical Inference Number of Parsimonious Solutions
Chelonia Data Set Number of Models with K Shifts
References

Parsimonious Solution : Definition

Definition

A coloring of the tips being given, a parsimonious allocation of the
shifts is such that it has a minimum number of shifts.

rO—

O @)

PB, MM, SR Shifted stochastic processes on trees 7/17



Stochastic Processes on Trees

Identifiability Problems and Counting Issues Identifiability Problems
Statistical Inference Number of Parsimonious Solutions
Chelonia Data Set Number of Models with K Shifts
References

Parsimonious Solution : Definition

Definition

A coloring of the tips being given, a parsimonious allocation of the
shifts is such that it has a minimum number of shifts.

M ]

O @) O

PB, MM, SR Shifted stochastic processes on trees 7/17



Stochastic Processes on Trees

Identifiability Problems and Counting Issues Identifiability Problems
Statistical Inference Number of Parsimonious Solutions
Chelonia Data Set Number of Models with K Shifts
References

Equivalent Parsimonious Allocations

Definition

Two allocations are said to be equivalent (noted ~) if they are
both parsimonious and give the same colors at the tips.

Find one solution Several existing Dynamic Programming
algorithms (see Felsenstein, 2004).

Enumerate all solutions New recursive algorithm, adapted from
previous ones (and implemented in R).
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Number of Models with K Shifts

Hypothesis “No Homoplasy”: 1 shift = 1 new color.
“K shifts <= K + 1 colors”
Bijection
SP' =8/ ~;  SE = {Parsimonious allocations of K shifts}
SP!' ~ {Tree compatible coloring of tips in K + 1 colors}

Problem Size of S,Fg’ ?

Proposition

PI +n—1
o [SK'[ < (™)
o |Si!| depends on the topology of the tree. It can be
computed with a recursive algorithm.

o For a binary tree: ‘S,’?’ ‘ = (2"_,%_K).
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Incomplete Data Model : EM

Z;
! Z2 5k Y3
|:Y4
Z3 Y5
Xj|Xpa(j) ~N qupa(j) +ri+ s ZH{Tk = bj}5k, Jf
k

EM Algorithm Maximize Eg[log ps(Z, Y) | Y].
E step “Upward-Downward” Algorithm.
M step OU: increase objective function (GM).

Initialization LASSO regression (see next).
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Linear Regression Model

Incomplete Data Model : EM
Linear Regression Model
Model Selection
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Model Selection on K

Proposition (Form of the Penalty and guaranties (o known))

Under our setting:

Y =RA+~E with E~N(0,V) and S={S;neM}, M= ]S/

K>0
Define the following penalty:
-K
pen(K) :A"iK2 EDKhi[K +2,n— K —2,e"LK], Ly = |og‘5,'§’]+2|og(K+2)
Ky
and the estimator:  f) = argmin||Y — §,7H%/ (1 aF w)
nem K»,] -1

Under some reasonable technical hypothesis, we get the non-asymptotic bound:

g [le=sll

< C(A k) [ inf { ls ’yzn”v + Dp(3+ Iog(n))} +1+ Iog(n)]
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Model Selection: Important Points

Based on Baraud et al. (2009)

@ Non-asymptotic bound.
@ Unknown variance.
@ No constant to be calibrated.

Novelties @ Non iid variance.
Penalty depends on the tree topology
(through ‘Sﬁ”).
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Chelonia Dataset

© Freshwater
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© Mainland
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Colors: habitats.
Boxes: selected EM regimes.
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Colors: habitats.
Boxes: selected EM regimes.
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Chelonia Dataset

© Freshwater
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Colors: habitats.
Boxes: selected EM regimes.
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Chelonia Dataset
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Chelonia Dataset

5;"#5@ Habitat EM
No. of shifts 16.00 5.00
No. of regimes 4.00 6.00
d InL -135.56 | -97.59
! In2/a (%) 7.83 5.43
v 0.35 0.22
CPU time (min) 1.25 134.49
T T T T 1
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Colors: habitats.
Boxes: selected EM regimes.
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Conclusion and Perspectives

A general inference framework for trait evolution models.

Conclusions @ Some problems of identifiability arise.
@ An EM can be written to maximize likelihood.
@ Adaptation of model selection results to non-iid
framework.

R codes Available on GitHub:
https://github.com/pbastide/Phylogenetic-EM

Perspectives @ Multivariate traits.
@ Deal with uncertainty (tree, data).
@ Use fossil records.
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Thank you for listening
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